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Difference-in-Difference Estimators with  
Continuous Treatments and No Stayers†

By Clément de Chaisemartin, Xavier D’Haultfœuille, 
and Gonzalo Vazquez-Bare*

Many treatments or policy interventions are 
continuous in nature. Examples include prices, 
taxes, and temperatures. Empirical research-
ers have usually relied on two-way fixed effect 
regressions to estimate treatment effects in such 
cases (see, e.g., Deschênes and  Greenstone 
2012). However, such estimators are not robust 
to heterogeneous treatment effects in general 
(de  Chaisemartin and  D’Haultfœuille 2020); 
they also rely on the linearity of treatment 
effects. We propose estimators for continuous 
treatments that do not impose those restric-
tions and that can be used when there are no 
stayers: the treatment of all units changes from 
one period to the next. This is, for instance, the 
case when the treatment is precipitations or tem-
peratures: for example, temperatures of all US 
counties change, if ever so slightly, between two 
consecutive years. We start by extending the 
nonparametric results of de Chaisemartin et al. 
(2023) to cases without stayers. We also pres-
ent a parametric estimator and use it to revisit 
Deschênes and Greenstone (2012).

I.  Setup, Assumptions, and Parameter of Interest

A representative unit is drawn from an infinite 
superpopulation and observed at two time peri-
ods. All expectations below are taken with 
respect to the distribution of variables in the 
superpopulation. We are interested in the effect 
of a continuous and scalar treatment variable 
on that unit’s outcome. Let ​​D​t​​​ denote the unit’s 

treatment at period ​t  ∈ ​ {1, 2}​​, and let ​​​t​​​ denote 
its support; let also ​​ denote the support of 
​​(​D​1​​, ​D​2​​)​​. For any ​​(​d​1​​, ​d​2​​)​  ∈  ​, let ​​Y​t​​​(​d​1​​, ​d​2​​)​​  
denote the unit’s potential outcome at ​t​ with 
treatment ​d​, and let ​​Y​t​​​ denote their observed out-
comes: ​​Y​t​​  = ​ Y​t​​​(​D​1​​, ​D​2​​)​​. Finally, for any ran-
dom variables ​​​(​X​t​​)​​t=1,2​​​, let ​Δ X  = ​ X​2​​ − ​X​1​​​. We 
impose the following assumptions:

ASSUMPTION 1 (Static Model): For all ​
t  ∈ ​ {1, 2}​​ and ​​(​d​1​​, ​d​2​​)​  ∈  ​, ​​Y​t​​​(​d​1​​, ​d​2​​)​​ only 
depends on ​​d​t​​​; we denote it by ​​Y​t​​​(​d​t​​)​​.

ASSUMPTION 2 (Parallel Trends): ​∀ d  ∈ ​ ​1​​​, ​ 
E​[ΔY​(d)​ | ​D​1​​  =  d, ​D​2​​]​  =  E​[ΔY​(d)​ | ​D​1​​  =d]​​.

ASSUMPTION 3 (Bounded Treatment, 
Bounded Lipschitz Potential Outcomes):

	 (i)	​​ ​1​​​ and ​​​2​​​ are bounded subsets of ​ℝ​.

​	 (ii)	 ∃​Y 
–
​  ≥  0​: ​​sup​​(​d​1​​,​d​2​​)​∈​​ E​[​Y 

–
​ | ​D​1​​  =  ​d​1​​, 

​D​2​​  =  ​d​2​​]​ < ∞​, and ​∀​(t, d, ​d ′ ​)​  ∈​{1, 2}​

× ​​ t​ 
2​​, ​​|​Y​t​​​(d)​ − ​Y​t​​​(​d ′ ​)​|​  ≤ ​ Y 

–
​​|d − ​d  ′ ​|​​.

Assumptions 2 and 3 are also imposed by 
de Chaisemartin et al. (2023) and are discussed 
therein.

ASSUMPTION 4 (No Stayers but “Quasi-stayers”): 
​Pr​(Δ D  =  0)​  =  0​ , ​Pr​(|Δ D|  ≤  η)​  >  0, ∀ η 
>  0​.

First, Assumption 4 states that there are 
no “stayers,” namely units for which ​​D​1​​ 
= ​D​2​​​. This is in contrast with de Chaisemartin 
et al. (2023), who assume throughout that there 
are stayers. Second, Assumption 4 states that 
there are quasi-stayers, namely units whose 
treatment change may be infinitesimally small. 
This assumption is realistic when the treatment 
is, say, temperatures: some counties may have 
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very similar temperatures from one year to the 
next, though no county has exactly the same 
temperatures.

Hereafter, we focus on the following effect:

(1)	 ​​θ​0​​  =  E​
[

​ 
​|Δ  D|​

 ________ 
E​[​|Δ  D|​]​

 ​ × ​ 
​Y​2​​​(​D​2​​)​ − ​Y​2​​​(​D​1​​)​

  ______________  ​D​2​​ − ​D​1​​
 ​

]
​​

​	 = ​ 
E​[sgn​(Δ  D)​​(​Y​2​​​(​D​2​​)​ − ​Y​2​​​(​D​1​​)​)​]​

   ___________________________  
E​[​|Δ  D|​]​

 ​ .​

​​θ​0​​​ is a weighted average of the slopes of 
units’ potential-outcome functions, from their 
period-one to their period-two treatment, the 
so-called WAOSS in de  Chaisemartin et  al. 
(2023). It follows from the mean-value theorem 
that it may be seen as a weighted average mar-
ginal effect.

II.  Nonparametric Identification and Estimation

THEOREM 1: If Assumptions 1–4 hold,

	​​ θ​0​​  = ​ (E​[S ΔY]​ − ​ζ​0​​)​/E​[​|Δ  D|​]​,​

with ​S  ≔  sgn​(Δ  D)​​ and

	​​ ζ​0​​  ≔  E​[S ​lim​ 
η​↓​​0

​ ​ E​[ΔY | ​D​1​​, ​|​D​2​​ − ​D​1​​|​  ≤  η]​]​.​

Theorem 1 shows that without stayers, ​​
θ​0​​​ is identified by the limit (as ​​η ​↓​​ 0​​) of a 
difference-in-differences comparing the ​ΔY​ of 
all units and of quasi-stayers.

We now discuss estimation of ​​θ​0​​​. Only the esti-
mation of ​​ζ​0​​​ raises difficulties. We show in the 
proof of Theorem 1 that under our assumptions, 
​g​(​d​1​​, δ)​  ≔  E​[ΔY | ​D​1​​  = ​ d​1​​, Δ  D  =  δ]​​ is well  
defined and continuous at ​​(​d​1​​, 0)​​ for any ​​d​1​​  ∈ ​
​1​​​. Hence, ​​ζ​0​​​ satisfies ​​ζ​0​​  =  E​[S g​(​D​1​​, 0)​]​​. 
This formulation links our problem to the esti-
mation of nonparametric additive models. To 
see this, suppose that the variables ​​(W, X)​  ∈  
ℝ × ​ℝ​​ k​​ satisfy ​h​(x)​  ≔  E​[W | X  =  x]​  =  
​∑ j=1​ 

k  ​​ ​h​j​​​(​x​j​​)​​ for some unknown functions 
​​​(​h​j​​)​​j=1,…,k​​​. Then under the normalization 
​E​[​h​j​​​(​X​j​​)​]​  =  0​ for ​j  <  k​, we can identify and 
estimate ​​h​k​​​ by remarking that

(2)	 ​​h​k​​​(​x​k​​)​  =  E​[h​(​X​1​​, …, ​X​k−1​​, ​x​k​​)​]​.​

We can then estimate ​​h​k​​(​x​k​​)​ by first estimating ​
h​ with any usual nonparametric estimator and 

then plugging it in the sample counterpart of the 
expectation in (2). As Linton and Nielsen (1995) 
and Kong, Linton, and Xia (2010) show, the cor-
responding estimator is, under regularity condi-
tions, asymptotically normal and converges at the 
standard univariate nonparametric rate (namely, ​​
n​​ 2/5​​, with ​n​ the sample size). This rate is also the 
optimal convergence rate for this problem (Stone 
1985). Up to minor changes (in ​​ζ​0​​​, ​g​ plays the 
role of ​h​ in (2) and ​​ζ​0​​​ also includes ​S​), our param-
eter ​​ζ​0​​​ can be obtained in the same way as ​​h​k​​​(​x​k​​)​​ , 
so we can also obtain an asymptotically normal 
estimator converging at the ​​n​​ 2/5​​ rate.

This contrasts with the standard (​​n​​ 1/2​​) rate 
obtained for the estimators of the WAOSS in the 
presence of stayers, as shown by de Chaisemartin 
et al. (2023). To understand the difference, note 
that with stayers, the proportion of units used as 
controls to reconstruct switchers’ counterfactual 
outcome evolution remains positive as ​n  →  ∞​.  
On the other hand, it tends to zero here since 
we need to consider quasi-stayers, with ​η  →  0​ 
as ​n  →  ∞​ to avoid any bias. This results in a 
lower rate of convergence.

Finally, in applications with no stayers, it is 
more difficult to propose placebo estimators 
of the parallel trends assumption. When a third 
period of data, period zero, is available, a pla-
cebo mimics the actual estimator, replacing ​ΔY​ 
by units’ period-zero-to-one outcome evolution. 
However, as units’ treatments may have changed 
from period zero to one, one would need to restrict 
the sample to period-zero-to-one quasi-stayers to 
avoid the placebo differing from zero due to the 
treatment’s effect. Thus, the placebo would com-
pare the period-zero-to-one outcome evolution of 
period-one-to-two switchers and quasi-stayers, 
restricting the sample to period-zero-to-one 
quasi-stayers. Then we conjecture that the num-
ber of units used as controls by the placebo 
may tend to zero faster than the number of 
units used as controls by the actual estimator, 
for instance if being a period-zero-to-one and a 
period-one-to-two quasi-stayer are independent 
events. Then the placebo may converge at an even 
slower rate than the actual estimator.

III.  A Parametric Approach

We now consider a parametric root-​n​ con-
sistent estimator that avoids issues related 
to nonparametric estimation and inference, 
while still allowing for heterogeneous and 
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nonlinear effects. Specifically, we impose that 
​g​(​d​1​​, δ)​  = ​ g​​λ​ 0​​​​​(​d​1​​, δ)​​, where the family ​​​(​g​λ​​)​​λ∈​ℝ​​ p​​​​ 
is known (but ​​λ​ 0​​​ is not). By definition of ​g​ and 
Assumption 2,

	​g​(​d​1​​, δ)​  =  E​[​Y​2​​​(​d​1​​)​ − ​Y​1​​​(​d​1​​)​ | ​D​1​​  =  ​d​1​​]​ + δ

	 × E​[​ 
​Y​2​​​(​d​1​​ + δ)​ − ​Y​2​​​(​d​1​​)​

  _________________ δ  ​ ​|​​
	​ D​1​​  =  ​d​1​​, Δ  D  =  δ]​.​

Thus, the parametric assumption amounts to 
imposing restrictions on both ​​d​1​​ ↦ E[​Y​2​​(​d​1​​) − 
​Y​1​​(​d​1​​) | ​D​1​​ = ​d​1​​]​ and the average slope ​(​d​1​​, δ) 
↦ E[( ​Y​2​​( ​d​1​​ +  δ)  −  ​Y​2​​( ​d​1​​))/δ | ​D​1​​ =  ​d​1​​, 

Δ  D = δ ]​. For instance, if ​​g​λ​​(​d​1​​, δ)​ is linear, we 
assume that the former function is linear and the 
latter is constant. Similarly, ​g​ is a polynomial if 
both functions are polynomial. Note that we can 
test that ​E[ΔY | ​D​1​​ = ​d​1​​, Δ  D = δ ] = ​g​​λ​ 0​​​​(​d​1​​, δ)​ 
for some ​​λ​ 0​​​ by a parametric specification test 
(see, e.g., Bierens 1982 or Hong and White 1995).

We consider a simple two-step estimator based 
on this parametric restriction and an i.i.d. sam-
ple ​​​(​D​1i​​, Δ  ​D​i​​, Δ​Y​i​​)​​i=1,…,n​​​. In the first step, we 
estimate ​​λ​ 0​​​ by (linear or nonlinear) least squares 
or, more generally, a generalized method of 
moments (GMM) estimator ​​λ ˆ ​​. In the second step, 
we estimate ​​θ​0​​​ by

	​​ θ ˆ ​  = ​ 
​∑ i=1​ 

n  ​​  ​S​i​​​[Δ​Y​i​​ − ​g​​λ ˆ ​​​​(​D​1i​​, 0)​]​
  ______________________  

​∑ i=1​ 
n  ​​​|Δ  ​D​i​​|​

 ​ .​

Since ​​θ ˆ ​​ may be seen as a two-step GMM estima-
tor, we obtain, under Assumptions 1–4 and stan-
dard regularity conditions on ​λ  ↦ ​ g​λ​​​(​d​1​​, δ)​​,

	​​ √ 
_

 n ​​(​θ ˆ ​ − ​θ​0​​)​ ​ →​​ d ​    ​(0, V​(ψ)​)​,​

where the influence function ​ψ​ satisfies

​ψ  = ​   1 ________ 
E​[​|Δ  D|​]​

 ​  ​{S​(ΔY − ​g​​λ​0​​​​​(​D​1​​, 0)​)​

	 − E​​[S ​ 
∂ g

 _ ∂ λ ​ ​​(​D​1​​, 0)​​|λ=​λ​0​​​​]​​ × ξ − ​θ​0​​​|Δ  D|​}​,​

with ​ξ​ the influence function of ​​λ ˆ ​​. We can thus 
simply estimate ​V​(ψ)​​ by a plug-in estimator, 
using an initial estimator of ​ξ​.

IV.  Application

We use the data from Deschênes and Greenstone 
(2012) to compute our parametric estimator. The 
authors use a balanced panel of 2,342 US coun-
ties in years 1987, 1992, 1997, and 2002 and con-
sider two-way fixed effect (TWFE) regressions, 
weighted by counties’ farmland acres, of annual 
agricultural profits in county ​c​ and year ​t​ on four 
treatment variables: growing season degree days, 
growing season degree days squared, precipi-
tations, and precipitations squared. To fit in the 
two-periods-one-treatment case we consider, we 
restrict the data to years 1997 and 2002, and we 
focus on the growing season degree days treat-
ment. The coefficient of that treatment in a TWFE 
regression estimated on years 1997 and 2002 and 
weighted by counties’ farmland acres is equal to 
−0.024 (s.e. clustered at the county level: 0.007), 
which is close to the corresponding TWFE coef-
ficient keeping the four years and all treatments 
(−0.015, standard error clustered at the county 
level: 0.005). Assuming that

​E​[​Y​2​​​(​d​1​​)​ − ​Y​1​​​(​d​1​​)​ | ​D​1​​  = ​ d​1​​]​  = ​ λ​0,1​​ + ​λ​0,2​​ ​d​1​​​

and

​E​[​ 
​Y​2​​​(​d​1​​ + δ)​ − ​Y​2​​​(​d​1​​)​

  _________________ δ  ​ ​|​​ ​D​1​​  = ​ d​1​​, Δ  D  =  δ]​​

   ​  = ​ λ​ 0,3​​ + ​λ​ 0,4​​ ​d​1​​ + ​λ​ 0,5​​ δ,​

we find that ​​θ ˆ ​​, weighted by counties’ farmland 
acres as well, is equal to −0.018 (standard error: 
0.011). Thus, the conclusion from the TWFE 
regression seems robust to allowing for some 
effect heterogeneity, even though the estimated 
effect is less significant. While arguably restric-
tive, our model for the conditional expectation 
function of slopes allows for some nonlinearity 
and heterogeneity in the effects of temperatures 
on agricultural output.

Appendix

PROOF OF THEOREM 1:
It suffices to show that almost surely,

(3)  ​​lim​ 
η​↓​​0

​ ​ E​[ΔY | ​D​1​​, ​|Δ  D|​  ≤  η]​ 

        =  E​[​Y​2​​​(​D​1​​)​ − ​Y​1​​​(​D​1​​)​ | ​D​1​​, ​D​2​​]​.​
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Fix ​η > 0​. By Assumption 4, ​Pr​(​|Δ  D|​ ≤ η | ​D​1​​)​ 
> 0​. Thus, ​E​[ΔY | ​D​1​​, ​|Δ  D|​ ≤ η]​​ is well defined. 
Moreover,

(4) ​ E​[ΔY | ​D​1​​, ​|Δ  D|​  ≤  η]​

  =  E​[​Y​2​​​(​D​2​​)​ − ​Y​2​​​(​D​1​​)​ | ​D​1​​, ​|Δ  D|​  ≤  η]​

	 + E​[​Y​2​​​(​D​1​​)​ − ​Y​1​​​(​D​1​​)​ | ​D​1​​, ​|Δ  D|​  ≤  η]​.​

Now, by Jensen’s inequality and ​(ii)​ of 
Assumption 3,

(5)	 ∣E​[​Y​2​​​(​D​2​​)​ − ​Y​2​​​(​D​1​​)​ | ​D​1​​, ​|Δ  D|​  ≤  η]​|

    ≤  E​[​|​Y​2​​​(​D​2​​)​ − ​Y​2​​​(​D​1​​)​|​ | ​D​1​​, ​|Δ  D|​  ≤  η]​

    ≤  E​[​Y 
–
​​|​D​2​​ − ​D​1​​|​ | ​D​1​​, ​|Δ  D|​  ≤  η]​

    ≤  η E​​
[
​  sup​ 
​(​d​1​​,​d​2​​)​∈

​​ E (​Y 
–
​ | ​D​1​​  = ​ d​1​​, ​D​2​​  = ​ d​2​​)

	 | ​​D​1​​, ​|Δ  D|​  ≤  η​
]
​​  ≤ ​ K 

–
 ​ η

for some ​​K 
–
 ​  <  ∞​. Next, by Assumption 2,

 ​ E​[​Y​2​​​(​D​1​​)​ − ​Y​1​​​(​D​1​​)​ | ​D​1​​, ​|Δ  D|​  ≤  η]​ 

      =  E​[​Y​2​​​(​D​1​​)​ − ​Y​1​​​(​D​1​​)​ | ​D​1​​]​ 

      =  E​[​Y​2​​​(​D​1​​)​ − ​Y​1​​​(​D​1​​)​ | ​D​1​​, ​D​2​​]​.​

Combined with (4)–(5), this yields (3). ∎
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