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In difference-in-differences (DiD) settings, the effect of a treatment is estimated by com-

paring the outcome trend of a group that switches treatment status at some point in time

to the outcome trend of a comparison group that remains at the same treatment status

throughout the period of study. In the canonical framework, both groups start at the same

baseline treatment status and then diverge. Many empirical studies, however, instead com-

pare a group that experiences a change in treatment status to a group that does not, while

allowing groups to have different status in the baseline (i.e., pre-switch) period. We refer to

these settings as “unequal-baseline DiD.”

The unequal-baseline DiD approach is ubiquitous in empirical studies. For instance,

it is widely used in tax research to measure the causal effects of taxes on income, wealth,

investments, etc. A typical study exploits differential changes in marginal tax rates (MTRs)

across groups of taxpayers over time (e.g., Kleven and Schultz, 2014; Jakobsen et al., 2020;

Yagan, 2015; Fuest et al., 2018). Similarly, minimum wage studies often compare workers

residing in states with different minimum wages or workers residing in the same state but

subject to different minimum wage regimes (e.g., Dube et al., 2010; Giuliano, 2013; Cengiz

et al., 2019; Jardim et al., 2022). Unequal-baseline DiDs have been employed in economics

of education to study effects of affirmative action bans (Bleemer, 2022); in health economics

to study the consequences of lead exposure (Grönqvist et al., 2020); in labor economics to

study the employment effects of working hour reductions (Chemin and Wasmer, 2009); in

environmental economics to study the energy effects of daylight savings time (Kotchen and

Grant, 2011); in development economics to study rebellions (Cao and Chen, 2022), malaria

eradication programs (Bleakley, 2010; Cutler et al., 2010; Lucas, 2010; Rossi and Villar, 2020),

and management institutions (Sawada et al., 2022), to name just a few.

In this paper, we analyze unequal-baseline DiD settings and provide conditions under

which commonly used event-study and two-way fixed effects (TWFE) estimators recover

causally interpretable parameters. We consider a setting where a group of units, the switch-

ers, switch between two treatment levels, whereas the comparison group, the stayers, remains

at the same treatment level throughout the study. We show that, in addition to the usual

parallel-trends assumption, identification of treatment effects in unequal-baseline DiDs re-

quires treatment effects to be time-invariant and to not accumulate over time. When the

latter conditions fail, the usual DiD estimands recover a combination of the effect of the

treatment for switchers and the change in the treatment effects over time for stayers. We

also show that, in such settings, the commonly used pre-trends tests that compare the evo-

lution of outcomes between groups in the pre-switch period may capture the change in the

treatment effect for the stayers over time, and thus may pick up significant differences in

trends even when the standard parallel-trends assumption holds.

We then consider a solution frequently used to account for differential trends in the

baseline period – the inclusion of a linear trend term in the event-study specification. This
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approach has been employed in unequal-baseline DiD frameworks (see e.g., Jakobsen et al.,

2020), but also in canonical DiD settings (see e.g., Bilinski and Hatfield, 2018; Mora and

Reggio, 2019; de Chaisemartin and D’Haultfœuille, 2020; Borusyak et al., 2024) where trends

appear to be non-parallel in a systematic way. To our knowledge, we are the first to provide a

closed-form characterization of the linear-trend-adjusted estimators and their corresponding

estimands. We show that (i) the linear-trend coefficient is a weighted average of outcome

pre-trends differences with a quadratic structure that gives higher weights to periods around

the middle of the period used to estimate the difference in trends and (ii) that the linear-

trend-adjusted event-study estimators are DiD comparisons after adjusting the outcomes

for a specific linear combination of pre-switch trends. Importantly, the weights used by

these estimators are observable, so our results allow the researcher to directly calculate these

weights. We then show that the linear-trend-adjusted estimators are consistent for the average

effects on the switchers if the differences in outcome trends are constant over time (or zero).

In contrast, if differences in trends are not constant over time, then both the standard event-

study estimators and the linear-trend-adjusted estimators are inconsistent, and it is generally

not possible to determine which asymptotic bias is larger.

Finally, we argue that unequal-baseline DiDs can exacerbate the problems in TWFE re-

gressions with staggered designs pointed out by recent literature (see Steigerwald et al., 2021;

de Chaisemartin and D’Haultfœuille, 2022; Roth et al., 2023, for surveys). We show, however,

that the researcher may drop the stayers from the sample and compare the just-switched to

the not-yet-switched, as long as these groups start from the same baseline treatment. Thus,

by providing an alternative set of comparison units, a staggered adoption setting offers the op-

portunity to recover treatment effects under the canonical parallel-trends assumption without

restricting treatment effect heterogeneity.

Our analysis suggests that the unequal-baseline DiD approach may successfully recover

treatment effects in settings where treatment effects are nearly constant, are expected to be

fairly immediate, or have stabilized over time. For example, this approach may work well in

studies estimating labor supply responses to personal income taxes, since labor responses tend

to stabilize quickly, typically after a brief adjustment period. In contrast, studying wealth

responses to a wealth tax will lead to biased estimates if the switchers and stayers face

different wealth taxes in the baseline period. This is because wealth taxes have a cumulative

effect on one’s wealth over time, leading to time-varying treatment effects. Having data

that covers the pre-baseline period in which groups experience equal treatment status can be

useful to establish the nature of treatment effects in the specific setting studied. Alternatively,

economic reasoning and prior research on the topic can be used to form expectations about

the nature of treatment effects or any frictions that may affect it.

The rest of the paper is organized as follows. Section 1 illustrates the intuition behind

our results with a simple three-period setting and graphical examples. Section 2 generalizes
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our results to a multi-period setting, and characterizes estimators for event-study designs and

designs with linear-trends adjustments. Section 3 concludes with practical recommendations.

Related literature. DiD models have been the focus of a rapidly growing literature an-

alyzing the performance of panel data methods under treatment effect heterogeneity (see

Steigerwald et al., 2021; de Chaisemartin and D’Haultfœuille, 2022; Roth et al., 2023, for

recent surveys). In particular, several studies (de Chaisemartin and D’Haultfœuille, 2020;

Goodman-Bacon, 2021; Sun and Abraham, 2021; Athey and Imbens, 2022; Borusyak et al.,

2024) have pointed out the identification problems that result from the “forbidden compar-

isons” implicitly used by TWFE specifications in staggered designs, whereby late treatment

adopters are compared to cohorts that became treated in earlier periods and are therefore

invalid as a comparison group. This literature has proposed several alternative methods that

recover causal effects by ensuring that only valid comparisons, that is, comparisons between

treated and never-treated or not-yet-treated, are used (de Chaisemartin and D’Haultfœuille,

2020; Callaway and Sant’Anna, 2021; Sun and Abraham, 2021; Borusyak et al., 2024).

Our setup can be seen as an extreme case of this forbidden comparisons problem, where

no valid comparisons are available because switchers and stayers never share the same treat-

ment status, and thus the solutions proposed by the literature cannot be directly applied.

For instance, in the scenario that we refer to as “universal adoption”, one group is always

treated, whereas the other group enters treatment in a later period. When relying on two-way

fixed effects models, the always-treated group acts as a comparison group (Goodman-Bacon,

2021), which generally results in inconsistent estimation of causal effects. To avoid this issue,

a common recommendation is to exclude the always-treated group from the analysis: for

instance, Sun and Abraham (2021) state that “we need to exclude [the always-treated] from

estimation” (page 186) and Borusyak et al. (2024) point out that this cohort is “not useful

for causal identification” (footnote 7). Excluding the always-treated is not feasible in our

setting because there are no other treatment cohorts. Therefore, identification in the uni-

versal adoption setting requires additional assumptions. This setting is most closely related

to de Chaisemartin and D’Haultfœuille (2018) and Kim and Lee (2019), who also consider

a universal adoption setup. Within a fuzzy DiD setup, de Chaisemartin and D’Haultfœuille

(2018) provide identification conditions for causal effects under a parallel-trends assumption

that is analogous to our Condition (1) and requires that the outcome trends for the switchers

and stayers are the same under their respective pre-policy change status (see Section 3.4.2

and the supplemental appendix in their paper). Kim and Lee (2019) provide conditions to

identify the effect of a binary treatment in the pre-policy change period using a “reverse DiD”

strategy in a two-period DiD. Our analysis adds to these results in multiple dimensions. First,

we consider a more general setting with both converging and diverging treatment status, of

which universal policy adoption is a particular case, and discuss different versions (and im-
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plications) of the parallel-trends assumption. We also allow potential outcomes to depend on

past treatment status, and our results show that the reverse-DiD strategy in Kim and Lee

(2019) requires the (often restrictive) assumption that potential outcomes only depend on

current treatment status (see Section 1.5). Finally, our framework allows for multiple peri-

ods, different estimation strategies (including event-study designs, which are one of the most

commonly-used empirical DiD approaches), a frequently-employed linear-trend adjustment,

and we characterize the behavior of the estimators typically used to test for pre-trends in

outcomes.

Another recent strand of the literature analyzes DiD models with continuous and multi-

valued treatments. Continuously distributed treatments (such as pollution levels or trade tar-

iffs) naturally give rise to settings where units start from different treatment levels. de Chaise-

martin et al. (2025) argue that comparing units with different baseline treatment levels

requires combining a parallel-trends assumption with a treatment effect homogeneity re-

striction, a point that we also discuss in Section 2. To avoid restricting treatment effect

heterogeneity, they propose two-step nonparametric estimators that “match” switchers to

stayers with the same treatment level in the pre-policy change period. Under an appropriate

parallel-trends assumption, these estimators are consistent for weighted averages of outcome

slopes for the switchers. In this paper, we focus instead on the parameters that can be esti-

mated using standard two-way fixed effects and event-study designs commonly implemented

in practice. On the other hand, Callaway et al. (2024) consider a continuous or multi-valued

treatment setting where all units start from a no-treatment baseline, so their results do not

directly apply to our case.

Finally, our paper is also related to the literature that focuses more directly on the

parallel-trends assumption. In particular, our results show that DiD designs with unequal

baseline treatment status may often suffer from non-parallel trends, a topic that has received

increased attention in recent years (Manski and Pepper, 2018; Kahn-Lang and Lang, 2019;

Bilinski and Hatfield, 2018; Rambachan and Roth, 2023; Roth and Sant’Anna, 2023; Roth,

2022). We also discuss the performance of the usual pre-trends test in the unequal-baseline

setting and argue that it is typically less informative about the validity of the parallel-trends

assumption compared to the canonical case.

1 Intuition-Building Example

1.1 Setup

We illustrate the main intuition behind our results by considering a simple setting with

three periods, t = 0, 1, 2. The potential outcomes for a random unit from the population

are given by Y0(d0) in period 0, Y1(d1, d0) in period 1, and Y2(d2, d1, d0) in period 2. Our
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framework allows potential outcomes to depend on the treatment assignment in all previous

periods, a property often known as dynamic potential outcomes. We consider a universal

adoption policy setting where one group of units, the switchers, are untreated in periods

t = 0, 1 but switch to treatment in period 2, whereas the other group, the stayers, are treated

in all periods (see Appendix A for examples of this setting in the empirical literature). Thus

d0 = d1 = 0 and d2 = 1 for the switchers, and d0 = d1 = d2 = 1 for the stayers. We let

τ2(d2, d1, d0) = Y2(d2, d1, d0)−Y2(0, 0, 0) be the treatment effect in period 2 of treatment path

(d0, d1, d2) compared to the always-untreated status (0, 0, 0), and similarly for τ1(d1, d0) =

Y1(d1, d0) − Y1(0, 0) and τ0(1) = Y0(1) − Y0(0). We let S be a switcher indicator, so that

S = 1 for the switchers and S = 0 for the stayers.

1.2 Illustrative Example

We use a wealth tax reform as a hypothetical illustrative example. Consider a country

where half of the adults are subject to a 1% wealth tax in periods t = 0, 1, 2. The remaining

half is not subject to any wealth tax in periods t = 0, 1. In period t = 2, a wealth tax reform

is introduced so that everyone is subject to the 1% tax. In this setup, individuals who were

always subject to the wealth tax are the stayers, while individuals subject to the wealth tax

only in period 2 are the switchers. We will discuss whether the typical DiD approach can

recover the effect of the 1% tax increase on the switchers’ wealth levels. Figures 1(a) and (b)

illustrate two possible scenarios in our setting. Figure (a) assumes that the treatment effect

of the wealth tax is immediate, while Figure (b) assumes that the treatment effect appears

two periods after treatment.

1.3 DiD Estimand

The DiD estimand between periods 2 and 1 is ∆post = E[Y2−Y1|S = 1]−E[Y2−Y1|S = 0],

which can be expressed as:

∆post = E[Y2(1, 0, 0)− Y1(0, 0)|S = 1]− E[Y2(1, 1, 1)− Y1(1, 1)|S = 0]

= E[τ2(1, 0, 0)|S = 1] + E[Y2(0, 0, 0)− Y1(0, 0)|S = 1]− E[Y2(1, 1, 1)− Y1(1, 1)|S = 0].

Suppose the following condition holds:

E[Y2(0, 0, 0)− Y1(0, 0)|S = 1] = E[Y2(1, 1, 1)− Y1(1, 1)|S = 0]. (1)

Then, ∆post = E[τ2(1, 0, 0)|S = 1], which is the average effect of entering the treatment in

period two on the switchers. Note that assumption (1) is not the standard parallel-trends

assumption used in canonical DiD settings because switchers and stayers are in different
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treatment statuses before period t = 2. To better understand the implied restrictions behind

this condition, we can rewrite the right-hand side of (1) as follows:

E[Y2(1, 1, 1)− Y1(1, 1)|S = 0] =E[Y2(0, 0, 0)− Y1(0, 0)|S = 0]

+E[τ2(1, 1, 1)− τ1(1, 1)|S = 0].

It is now easy to see that the following two assumptions are sufficient for condition (1):

Assumption A (Canonical parallel-trends assumption) The average potential outcomes

of switchers and stayers under no treatment follow the same trajectory over time,

E[Y2(0, 0, 0)− Y1(0, 0)|S = 1] = E[Y2(0, 0, 0)− Y1(0, 0)|S = 0].

Assumption B (Time-invariant non-cumulative effects) The average effect of the treat-

ment on the stayers is invariant to the number of periods under treatment and invariant to

the initial period of treatment,

E[τ2(1, 1, 1)|S = 0] = E[τ1(1, 1)|S = 0].

Assumption B implicitly imposes two conditions. Notice that:

τ2(1, 1, 1)− τ1(1, 1) = [τ2(1, 1, 1)− τ2(1, 1, 0)] + [τ2(1, 1, 0)− τ1(1, 1)] .

This difference is zero when E[τ2(1, 1, 1)|S = 0] = E[τ2(1, 1, 0)|S = 0], so the effect of being

treated for three periods equals the effect of being treated for two periods (non-cumulative

effects), and E[τ2(1, 1, 0)|S = 0] = E[τ1(1, 1)|S = 0] so the effect of being treated for exactly

two periods is the same regardless of whether the treatment started in period 2 or 1 (time-

invariant effects).

Under Assumptions A and B, condition (1) holds, and therefore the DiD estimand ∆post

identifies the average effect of entering the treatment in period 2 on the switchers. This

demonstrates that the parallel-trends condition (1) is not equivalent to the canonical parallel-

trends assumption (Assumption A) that requires that potential outcomes evolve similarly

under no treatment, nor is Assumption A alone sufficient to identify the effect of the treatment

on the switchers. Specifically, under Assumption A only,

∆post = E[τ2(1, 0, 0)|S = 1]− E[τ2(1, 1, 1)− τ1(1, 1)|S = 0].

Thus, when treatment effects vary or accumulate over time, the DiD estimand will recover

the difference between the average effect on the switchers and the change in the average effect

over time for the stayers. In settings where the treatment effect is small in the beginning and
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increases over time, this issue can lead to sign reversals (de Chaisemartin and D’Haultfœuille,

2022; Roth et al., 2023): the DiD estimand may be negative even when all the treatment

effects are positive.

In our wealth tax example, condition (1) requires individuals subject to the wealth tax

throughout the years to experience a similar wealth growth path as individuals who were

not subject to the wealth tax before period t = 2. While this assumption appears to be

innocuous, generally speaking, it cannot be satisfied: in the absence of perfectly offsetting

behavioral responses, the wealth of taxed individuals will grow at (approximately) a 1% lower

rate than that of the untaxed individuals, simply because wealth is a cumulative measure. In

contrast, Assumption A requires stayers and switchers to experience similar wealth growth

paths when there is no wealth tax – a plausible assumption if the two groups are sufficiently

similar. Note that Assumption B also does not hold in our wealth tax example – while

wealth tax treatment is likely to be invariant to the initial period of treatment, the treatment

is cumulative. Individuals subject to the wealth tax for two years will have a 1% lower wealth

level than individuals subject to a wealth tax for one year only, and a 2% lower wealth level

than individuals not subject to the wealth tax at all (again, abstracting from behavioral

responses).

1.4 Pre-Trends Tests

The parallel-trends assumption A involves unobservable counterfactual outcomes and

therefore cannot be tested directly. In practice, researchers often strengthen this assumption

by requiring that it holds in all pre-periods, thus adding to Assumption A the requirement

that E[Y1(0, 0) − Y0(0)|S = 1] = E[Y1(0, 0) − Y0(0)|S = 0] between periods t = 0 and

t = 1 as well. In a canonical DiD setting, this second requirement is testable because both

units are untreated in these periods. This is the so-called pre-trends test. Based on this

common practice, in an unequal baseline DiD, a researcher can consider the difference in

outcome trends between switchers and stayers in periods 1 and 0, ∆pre = E[Y1 − Y0|S =

1]− E[Y1 − Y0|S = 0]. This difference can be expressed as:

∆pre = E[Y1(0, 0)− Y0(0)|S = 1]− E[Y1(1, 1)− Y0(1)|S = 0]

= E[Y1(0, 0)− Y0(0)|S = 1]− E[Y1(0, 0)− Y0(0)|S = 0]− E[τ1(1, 1)− τ0(1)|S = 0].

Thus, we see that ∆pre may be non-zero even under the canonical parallel-trends assumption

whenever treatment effects vary or accumulate over time. Figure 1(a) illustrates this case:

even though switchers and stayers exhibit the same trend under no treatment, they will

not exhibit parallel trends in the pre-switch period if the treatment effect of wealth tax is

immediate.
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Figure 1(b) illustrates a case where the pre-trends test will (inadvertently) suggest that

the groups are comparable, while in reality, the identification conditions fail. In Figure

(b), we assume that the treatment effects on the stayers are not immediate. Consequently,

the parallel-trends assumption appears to be satisfied in the pre-treatment periods, but the

treatment effects are not identified because trends become non-parallel in the post-switch

period. Note that the bias in Figure 1(b) implies a DiD estimand of the opposite sign from

the true treatment effect.

Our analysis thus highlights that when the treatment effects are cumulative over time

or depend on the timing of treatments, the DiD estimator is biased, and this bias can poten-

tially result in a sign reversal. When the treatment effects on the stayers are immediate, as

illustrated in Figure 1(a), this issue may be detected from a pre-trends analysis. However, in

cases like Figure 1(b), pre-trends tests are unable to detect this issue. Importantly, our styl-

ized illustrative examples abstract away from important practical issues related to inference.

In practice, differentiating between cases 1(a) and 1(b) may not be straightforward because

of noisy data and/or because researchers often have access to only a short pre-switch period,

which results in low statistical power to detect existing differences.1 This demonstrates why

the validity of the parallel-trends assumption in unequal-baseline settings should not be as-

sessed solely on statistical grounds, and why empirical evidence needs to be complemented

with institutional knowledge and economic theory.

1.5 Remarks and Further Discussions

Treatment Renaming. A savvy reader may note that condition (1) can be converted into

a seemingly innocuous canonical Assumption A by choosing an alternative definition of treat-

ment. For example, in our wealth tax example, one could define treatment as “experiencing

a wealth tax change of 1%”. In this case, the stayers and the switchers are not treated in

periods 0 and 1, while the switchers experience treatment in period 2. Such renaming simply

masks, but does not solve, the problem. Under such a modified definition of treatment, the

parallel-trends assumption now requires that treated individuals in the absence of treatment

would have experienced the same wealth growth path as comparison individuals. Note that

the comparison group consists of individuals who were always subject to the wealth tax (these

individuals do not “experience a wealth tax change of 1%”), while the treatment group con-

sists of individuals who in absence of treatment were not subject to wealth tax (and hence do

“experience a wealth tax change of 1%”). Since those subject to a wealth tax will generally

not have a wealth growth path as those not subject to a wealth tax, such renaming does not

1It is well known that the absence of differences in trends before the policy change does not imply that
trends would have been the same in the post period in the absence of the policy change. Recent literature
has also pointed out that pre-trends tests often have limited statistical power to detect violations of parallel
trends (Bilinski and Hatfield, 2018; Freyaldenhoven et al., 2019; Kahn-Lang and Lang, 2019; Roth, 2022).
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alleviate the problem discussed in this section.

Completed Treatments on the Stayers. The analysis in this section shows that if

treatment effects on the stayers vary or accumulate over time, the DiD estimand will not

recover the effect on the switchers. In practice, treatment effects typically feature one of

three paths: they may be constant and immediate, constant in the long run but gradual in

the short run, or they may vary/accumulate over time, both in the short and long run. As

Assumption B makes it clear, to avoid bias, treatment effects on the stayers must either be

constant and immediate, or, at the moment of evaluation (i.e., by period 1), have reached

the long run state, thus effectively reaching the constant treatment effect phase.

Our wealth tax example represents a setting where treatment effects always accumulate

over time: as long as the individual is subject to the wealth tax treatment, his wealth will

grow more slowly than the wealth of a similar individual who is not subject to the wealth

tax. However, for most other tax types – e.g., income taxes, corporate income taxes, etc –

we would generally expect constant treatment effects, but perhaps after a brief adjustment

period. Such DiD settings will produce unbiased estimates as long as sufficient time has

passed from when the stayers were initially treated, so that the stayers have “completed”

their treatments. Figure 2(a) illustrates such a scenario. In this example, the treatment on

the stayers reaches the constant treatment phase before the period of study.

Consequently, unequal-baseline DiD analysis requires that (i) researchers have a prior

belief about the nature of treatment effects that is consistent with Assumptions A and B,

and (ii) the estimated treatment effects are consistent with this prior.

Temporary Treatments on the Stayers. In some settings, a treatment is introduced

in a certain period and then removed in subsequent periods. Consider the case where the

treatment is assigned in period 0 for the stayers and then removed in periods 1 and 2. As

before, the switchers are treated in period 2. In this case,

∆post = E[Y2(1, 0, 0)− Y1(0, 0)|S = 1]− E[Y2(0, 0, 1)− Y1(0, 1)|S = 0]

= E[Y2(1, 0, 0)− Y2(0, 0, 0)|S = 1]

+ E[Y2(0, 0, 0)− Y1(0, 0)|S = 1]− E[Y2(0, 0, 1)− Y1(0, 1)|S = 0],

where

E[Y2(0, 0, 1)− Y1(0, 1)|S = 0] = E[Y2(0, 0, 0)− Y1(0, 0)|S = 0] + E[τ2(0, 0, 1)− τ1(0, 1)|S = 0].

With such temporary treatments, the DiD parameter recovers the average effect on the

switchers when Assumption A holds and when the effect of the treatment vanishes immedi-
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ately after the treatment is removed, which is analogous to the time-invariant effects part of

Assumption B. Under these conditions, since the treatment only lasts one period, the effects

of the treatment do not accumulate over time and thus the condition of no cumulative effects

plays no role.

In our wealth tax example, this scenario corresponds to a situation where some individu-

als are subject to the wealth tax in period 0 but not in periods 1 and 2, while other individuals

are subject to tax in period 2 but not periods 0 and 1. In this case, the usual DiD approach

will recover the effect of wealth taxation on income level if the wealth accumulation process

is such that the cancellation of a wealth tax immediately restores one’s wealth growth path

to that of untaxed individuals. This is a plausible assumption in the case of wealth taxes.

This case is illustrated in Figure 2(b).

Figure 2(c) illustrates the opposite scenario, where treatment effects are not immediate.

In the case of wealth tax, this may happen if previously taxed individuals engage in costly

tax evasion schemes that cannot be reversed immediately. In that case, their wealth growth

path may not immediately return to that of untaxed individuals. In such circumstances, the

DiD estimator is likely to be biased, and this bias can be large, even implying an estimated

effect of the opposite sign than the true treatment effect, as in Figure 2(c).

Reverse DiD. Kim and Lee (2019) consider a DiD setting with universal adoption and

show that under a parallel-trends assumption that involves the treated potential outcomes, it

is possible to identify the average effect on the switchers in the pre-switch period. A crucial

implicit assumption in their result is that potential outcomes are static and do not depend on

past treatments, so that Y2(d2, d1, d0) = Y2(d2) and Y1(d1, d0) = Y1(d1). Specifically, when

potential outcomes are static,

∆post = E[Y2(1)− Y1(0)|S = 1]− E[Y2(1)− Y1(1)|S = 0]

= E[Y1(1)− Y1(0)|S = 1] + E[Y2(1)− Y1(1)|S = 1]− E[Y2(1)− Y1(1)|S = 0],

and thus if E[Y2(1)− Y1(1)|S = 1] = E[Y2(1)− Y1(1)|S = 0], the DiD estimand recovers the

effect of the treatment in the pre-switch period.

When potential outcomes are dynamic, however, the DiD estimand can be written as:

∆post = E[τ1(1, 0)|S = 1]

+ E[Y2(1, 0, 0)− Y1(1, 0)|S = 1]− E[Y2(1, 1, 1)− Y1(1, 1)|S = 0]

= E[τ1(1, 0)|S = 1]

+ E[τ2(1, 0, 0)− τ2(1, 1, 1)|S = 1] + E[τ1(1, 1)− τ1(1, 0)]

+ E[Y2(1, 1, 1)− Y1(1, 1)|S = 1]− E[Y2(1, 1, 1)− Y1(1, 1)|S = 0].
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From this expression it is clear that, in addition to the parallel-trends assumption un-

der treatment E[Y2(1, 1, 1) − Y1(1, 1)|S = 1] = E[Y2(1, 1, 1) − Y1(1, 1)|S = 0], identifying

E[τ1(1, 0)|S = 1] also requires restricting how treatment effects vary over time. Thus, our

framework generalizes the results of Kim and Lee (2019) by allowing for dynamic treatment

effects and by not requiring treatment convergence.

Note that in our wealth tax example, potential outcomes are not static, since one’s

wealth level today depends not only on the current level of wealth taxation but also on the

past levels of wealth taxation. Consequently, the results of Kim and Lee (2019) would not

apply.

2 General Setting and Estimation

2.1 Setup

We now generalize the previous setup to multiple periods and different treatment switch-

ing regimes. We consider balanced panel data with units i = 1, . . . , n and time periods

t = 1, . . . , T , with a period 1 < t∗ ≤ T in which the switchers change from treatment sta-

tus dpre to dpost. We refer to the periods t < t∗ as the “pre-switch” periods and t ≥ t∗ as

the “post-switch periods”. As before, S = 1 denotes the switchers and S = 0 denotes the

stayers, who remain at treatment status d0 throughout the observed period. In addition to

the canonical DiD, where d0 = dpre = 0 and dpost = 1, this setup encompasses universal

adoption settings where d0 = dpost = 1 and dpre = 0, policy reversal settings illustrated in

Figure 3(a) where d0 = dpost = 0 and dpre = 1, and settings where the treatment statuses do

not necessarily converge, d0 ̸= dpost, as illustrated in Figure 3(b). Appendix A lists several

examples of each setting in the empirical literature.

For any t′ < t, we let dt:t′ = (dt, dt−1, . . . , dt′) denote the (t−t′+1)-dimensional vector of

treatments up to period t starting from period t′, with support Dt:t′ . The potential outcome

at time t can depend on all the treatment values up to time t. The vector of treatment

statuses is d0
t:1 = (d0, d0, . . . , d0) for stayers and dpre

t:1 = (dpre, dpre, . . . , dpre) for t < t∗ and

(dpost
t:t∗ ,d

pre
t∗−1:1) = (dpost, . . . , dpost, dpre, . . . , dpre) for t ≥ t∗ for switchers, where the switch

occurs at time t∗. The observed outcome and treatment status in each period are denoted by

Yt and Dt, respectively. We assume the observed data obeys the following sampling scheme,

which is standard in panel data settings.

Assumption 1 (Sampling and moments)

1. Observations (Yi1, Yi2, . . . , YiT , Di1, Di2, . . . , DiT )
n
i=1 are iid draws from an infinite su-

perpopulation of units.

2. 0 < P[S = 1] < 1 and for all dt:1 ∈ Dt:1, E[Yt(dt:1)
2] < ∞.

12



The goal is to identify the effect of the treatment switch from dpre to dpost on the switchers,

E[Yt(dpost
t:t∗ ,d

pre
t∗−1:1)− Yt(d

pre
t:1 )|S = 1],

which may vary over time. Thus, the relevant counterfactual for switchers is E[Yt(dpre
t:1 )|S = 1],

that is, the outcome that would have been observed had the switchers remained at their initial

treatment status. Ideally, the researcher would compare the outcome evolution of switchers

to stayers that remain at treatment status dpre. This comparison relies on the canonical

parallel-trends assumption, stated as follows.

Assumption 2 (Canonical parallel-trends assumption) For all t and t′,

E[Yt(dpre
t:1 )− Yt′(d

pre
t′:1)|S = 1] = E[Yt(dpre

t:1 )− Yt′(d
pre
t′:1)|S = 0].

Assumption 2 generalizes Assumption A and states that the outcomes would exhibit the

same trajectory across groups at the pre-switch status of the switchers. In our wealth tax

example, this requires stayers and switchers to experience similar wealth growth paths when

there is no wealth tax.

Because there are no stayers at dpre, the switchers have to be compared instead to stayers

that remain at d0. Thus, the canonical parallel-trends assumption is not sufficient to identify

the effect on the switchers. We introduce the following assumption to restore identification.

Assumption 3 (Time-invariant non-cumulative effects) For all t and t′,

E[Yt(dpre
t:1 )− Yt(d

0
t:1)|S = 0] = E[Yt′(dpre

t′:1)− Yt′(d
0
t′:1)|S = 0].

Assumption 3 generalizes Assumption B and implies that, for stayers, the average effect of

receiving treatment level dpre for t periods compared to receiving treatment d0 for t periods is

the same, regardless of the period in which this comparison is made. As discussed previously,

this means that the treatment effects do not vary and do not accumulate over time. Sufficient

conditions for Assumption 3 are that (i) potential outcomes are static, that is, they do not

depend on past treatments, Yt(dt, dt−1, . . . , d1) = Yt(dt), and (ii) that the average treatment

effects on the stayers comparing dpre to d0 is time invariant, E[Yt(dpre) − Yt(d
0)|S = 0] =

E[Yt′(dpre)− Yt′(d
0)|S = 0] for any t and t′.

When Assumptions 2 and 3 hold simultaneously,

E[Yt(dpre
t:1 )− Yt′(d

pre
t′:1)|S = 1] = E[Yt(d0

t:1)− Yt′(d
0
t′:1)|S = 0], (2)

a condition that generalizes condition (1).2 As a result, the DiD estimands recover the effects

2Alternatively, to guarantee this condition, one may assume that Assumption 2 holds under the stayers’
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on the switchers, as we discuss next.

2.2 Event-Study Designs

Consider the standard event-study specification:

Yit = αi + δt +
∑
ℓ ̸=t̃

βℓD
ℓ
it + εit, Dℓ

it = Si1(t = ℓ), (3)

where αi are unit fixed effects, δt are time effects, and t̃ < t∗ is the baseline or reference

period. We refer to the linear projection coefficients βℓ for all ℓ ≥ t∗ as the “post-switch

coefficients” and for ℓ < t∗ as the “pre-switch coefficients”.

Proposition 1 Under Assumption 1,

β̂ℓ =

∑n
i=1 (Yiℓ − Yit̃)Si∑n

i=1 Si
−
∑n

i=1 (Yiℓ − Yit̃) (1− Si)∑n
i=1(1− Si)

→P βℓ

where for ℓ ≥ t∗,

βℓ = E[Yℓ(dpost
ℓ:t∗ ,d

pre
t∗−1:1)− Yℓ(d

pre
ℓ:1)|S = 1]

+ E[Yℓ(dpre
ℓ:1)− Yt̃(d

pre

t̃:1
)|S = 1]− E[Yℓ(dpre

ℓ:1)− Yt̃(d
pre

t̃:1
)|S = 0]

+ E[Yℓ(dpre
ℓ:1)− Yℓ(d

0
ℓ:1)|S = 0]− E[Yt̃(d

pre

t̃:1
)− Yt̃(d

0
t̃:1
)|S = 0],

and for ℓ < t̃,

βℓ = E[Yℓ(dpre
ℓ:1)− Yt̃(d

pre

t̃:1
)|S = 1]− E[Yℓ(dpre

ℓ:1)− Yt̃(d
pre

t̃:1
)|S = 0]

+ E[Yℓ(dpre
ℓ:1)− Yℓ(d

0
ℓ:1)|S = 0]− E[Yt̃(d

pre

t̃:1
)− Yt̃(d

0
t̃:1
)|S = 0].

This result shows that the post-switch coefficients recover the sum of the effect on the switch-

ers, the difference in trends under dpre, and the change over time of the treatment effect on

the stayers. The pre-switch coefficients capture the latter two terms in pre-periods.

Proposition 1 demonstrates that when Assumptions 2 and 3 hold, the post-switch coef-

ficients recover the average effect on the switchers in period ℓ, while pre-switch coefficients

βℓ are equal to zero. However, when the treatment effect on the stayers varies over time, i.e.

when Assumption 3 fails, the post-switch coefficients recover a combination of the effect of

the treatment on the switchers and the change of the effect on the stayers over time, while

the pre-switch coefficients capture the change in the effect on the switchers in the pre-switch

period.

treatment status d0. All our results hold under this alternative assumption, with the only difference that
Assumption 3 has to be imposed on the effects on the switchers instead of the stayers.
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Jakobsen et al. (2020) provide a compelling illustration of these issues in an empirical

setting. This study explores how wealthy individuals respond to wealth taxes in Denmark.

Their first approach exploits a 1989 reform that increased the wealth tax exemption threshold

for couples relative to singles. As a result of the reform, some married individuals who were

previously subject to wealth taxation became exempt from it. The authors estimate causal

effects of this change by comparing couples in the affected wealth range to two plausible

comparison groups: (a) single individuals in the same wealth range who were always subject

to wealth tax (their preferred specification) and (b) couples in a lower wealth range who were

always exempt from wealth tax.3

Figure 4 reproduces Jakobsen et al. (2020) findings. Note that comparing treated couples

to untreated singles in Figure 4(a) follows the canonical DiD framework: both groups experi-

ence the same treatment status (a positive wealth tax) in the baseline period. Consequently,

the DiD approach recovers the average effect on the switchers as long as the parallel-trends

Assumption 2 holds. However, the comparison of treated couples to couples who were not

subject to wealth tax in the first period in Figure 4(b) constitutes an unequal-baseline DiD

comparison. Thus, this approach identifies the effect on the switchers under the additional

assumption that the wealth tax results in a constant treatment effect. This is unlikely in this

setting because wealth taxes lead to mechanical changes in wealth: even if individuals choose

not to respond to tax incentives, their wealth accumulates slower (faster) in the presence

of higher (lower) wealth tax rates. Indeed, as Figure 4 shows, the first comparison group

appears to provide a better comparison than the second, with the raw data showing parallel

trends in (a) but divergent trends in (b). The divergent trends observed in Figure 4(b) could

either be due to a cumulative treatment effect of wealth taxation (similar to Figure 1(a)) or

because groups are not comparable, with no way of telling these apart. The authors assume

the former is true and account for the differential trends by including a linear trend term in

their specification. We now evaluate the validity of such linear-trend adjustment.

2.3 Linear-Trend Adjustments

A frequently used solution to account for differential trends in the pre-switch period

is to include a linear trend in the event-study specification. For example, Jakobsen et al.

(2020) account for differential trends in Figures 4(b) and 5 by including “a linear differential

pretrend identified based on [...] prereform years (i.e., the omitted years in the first term

on the right-hand side).” In an unequal-baseline DiD, time-varying treatment effects will

generally result in differential pre-switch trends, and thus, the linear adjustment may help

address this issue.

3For simplicity and lack of relevance, our discussion abstracts away from other practical issues that may
affect individuals’ treatment status, e.g. fluctuations of wealth and changes of marital status. The authors
address these separately.
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To analyze this approach, we introduce some additional notation. Let TLA ⊆ {1, . . . , t∗−
1} be the subset of periods used to estimate the linear-trend adjustment, and let TLA ≥ 2

be the number of elements in TLA. We assume that TLA consists of consecutive periods,

TLA = {tm, tm + 1, . . . , tM − 1, tM}, where 1 ≤ tm < tM ≤ t∗ − 1. Define the average and the

variance of time periods in set TLA as t̄LA =
∑

t∈TLA t/TLA, VLA =
∑

t∈TLA(t− t̄LA)
2/TLA, and

let ∆Yit = Yit − Yit−1 denote one-period differences. We consider the following specification:

Yit = αi + δt + γSit+
∑
ℓ/∈TLA

βLA
ℓ Si1(t = ℓ) + ηit, (4)

and we refer to γ as the “linear-adjustment coefficient”.

Proposition 2 Under Assumption 1,

γ̂ =

tM∑
t=tm+1

ωγ
t

(∑n
i=1∆YitSi∑n

i=1 Si
−
∑n

i=1∆Yit(1− Si)∑n
i=1(1− Si)

)
→P γ,

β̂LA
ℓ =

∑
i

(Si − S̄)

nS̄(1− S̄)

(
Yiℓ − Yitm −

tM∑
t=tm+1

∆Yitω
ℓ
t

)
→P βLA

ℓ ,

where the weights ωγ
t and ωℓ

t are given by:

ωγ
t =

(t− tm)(tM + 1− t)

2TLAVLA
, ωℓ

t =

(
tM + 1− t

TLA

)
+ (ℓ− t̄LA)

(t− tm)(tM + 1− t)

2TLAVLA
.

Furthermore,

γ =

tM∑
t=tm+1

ωγ
t

(
E[Yt(dpre

t:1 )− Yt−1(d
pre
t−1:1)|S = 1]− E[Yt(d0

t:1)− Yt−1(d
0
t−1:1)|S = 0]

)
,

for ℓ ≥ t∗,

βLA
ℓ = E

[
Yℓ(d

post
ℓ:t∗ ,d

pre
t∗−1:1)− Yℓ(d

pre
ℓ:1)
∣∣S = 1

]
+ E

[
Yℓ(d

pre
ℓ:1)− Ytm(d

pre
tm:1)

∣∣S = 1
]
− E

[
Yℓ(d

0
ℓ:1)− Ytm(d

0
tm:1)

∣∣S = 0
]

−
tM∑

t=tm+1

ωℓ
t

(
E[Yt(dpre

t:1 )− Yt−1(d
pre
t−1:1)|S = 1]− E[Yt(d0

t:1)− Yt−1(d
0
t−1:1)|S = 0]

)
and for ℓ < t∗, ℓ /∈ TLA,

βLA
ℓ = E[Yℓ(dpre

ℓ:1)− Ytm(d
pre
tm:1)|S = 1]− E[Yℓ(d0

ℓ:1)− Ytm(d
0
tm:1)|S = 0]
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−
tM∑

t=tm+1

ωℓ
t

(
E[Yt(dpre

t:1 )− Yt−1(d
pre
t−1:1)|S = 1]− E[Yt(d0

t:1)− Yt−1(d
0
t−1:1)|S = 0]

)
.

Proposition 2 shows that the inclusion of a linear-adjustment coefficient γ adjusts the DiD

estimators by subtracting a weighted average of pre-switch differences in trends between

switchers and stayers. The proof in Appendix B shows that ωℓ
t ≥ 0 and

∑tM
t=tm+1 ω

ℓ
t = ℓ− tm.

The weights ωγ
t are non-negative, sum up to one, and are quadratic in t, with the largest

weight given to the middle of the estimation period TLA (specifically, period t̄+0.5), and are

decreasing towards early and late periods tm and tM , respectively. Note that all the weights

are non-random and observable, since they are functions of the time periods only, so they

can be easily calculated in any application.

The coefficient γ is equal to zero under Assumptions 2 and 3. Therefore, the inclusion

of a linear trend helps evaluate the validity of the combined assumptions. However, the

test may fail in two circumstances. First, if differences in trends are volatile over time, the

negative differences may cancel out with positive differences, resulting in an approximately

zero estimate of γ̂ even though pre-trends are not parallel. Similarly, the quadratic nature of

the weights ωγ
t implies that the test may fail to detect differences in trends if these differences

are small in the vicinity of period t̄+0.5 but large otherwise. Visual examination of the data

is useful to rule out such possibilities.

The linear-adjustment specification allows the researcher to replace the requirement of

constant, non-cumulative treatment effects with the assumption that treatment effects are

linear over time.

Assumption 4 (Linear treatment effects on the stayers) For all t, there is a constant

κ independent of t such that:

E[Yt(dpre
t:1 )− Yit(d

0
t:1)|S = 0]− E[Yt−1(d

pre
t−1:1)− Yt−1(d

0
t−1:1)|S = 0] = κ.

Under this assumption, the following result holds.

Corollary 1 Under Assumptions 2 and 4, γ = κ and for ℓ ≥ t∗,

βLA
ℓ = E[Yℓ(dpost

ℓ:t∗ ,d
pre
t∗−1:1)− Yℓ(d

pre
ℓ:1)|S = 1],

while for ℓ < t∗, ℓ /∈ TLA, βLA
ℓ = 0.

The above result shows that under the canonical parallel-trends assumption and under lin-

earity of the treatment effects, the post-switch coefficients recover the average effects on the

switchers, the pre-switch coefficients are equal to zero, and the linear-adjustment coefficient

equals the change in the treatment effect on the stayers between consecutive periods.
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While Assumption 4 can be thought of as a generalization of Assumption 3 because it

allows for time-varying treatment effects, it does so in a parametric way. If treatment effects

vary nonlinearly over time, both the event-study estimators and the estimators with a linear

adjustment are inconsistent, and it is not possible in general to determine which asymptotic

bias is larger. We illustrate this point with a simple three-period example. Suppose there

are two pre-switch periods, and one post-switch period, i.e., t = 1, 2, 3 and t∗ = T = 3.

Suppose that the canonical parallel-trends Assumption 2 holds. The event-study estimator

uses period t = 2 as the reference period t̃. The linear-adjustment estimator uses the first

two periods to estimate the linear-trend component, so that TLA = {1, 2}. The effect of the

switch is then estimated in period 3. By Propositions 1 and 2,

β̂3 →P β3 = E
[
Y3(d

post,dpre
2:1)− Y3(d

pre
3:1)
∣∣S = 1

]
+ E

[
Y3(d

pre
3:1)− Y3(d

0
3:1)
∣∣S = 0

]
− E

[
Y2(d

pre
2:1)− Y2(d

0
2:1)
∣∣S = 0

]
and

β̂LA
3 →P βLA

3 = E
[
Y3(d

post,dpre
2:1)− Y3(d

pre
3:1)
∣∣S = 1

]
+ E

[
Y3(d

pre
3:1)− Y3(d

0
3:1)
∣∣S = 0

]
− E

[
Y2(d

pre
2:1)− Y2(d

0
2:1)
∣∣S = 0

]
−
(
E
[
Y2(d

pre
2:1)− Y2(d

0
2:1)
∣∣S = 0

]
− E

[
Y1(d

pre)− Y1(d
0)
∣∣S = 0

])
.

Then the bias of the event-study estimator equals the change in the effect for the stayers

between periods 2 and 3, whereas the bias of the linear-adjusted estimator is the difference

in changes of the effect on the stayers between periods 2 and 3 and periods 1 and 2. We

consider the following four cases, each resulting in a different asymptotic bias summarized in

Table 1.

Case 1: constant treatment effects.

0 = E
[
Y2(d

pre
2:1)− Y2(d

0
2:1)
∣∣S = 0

]
− E [Y1(dpre)− Y1(d0)|S = 0]

0 = E
[
Y3(d

pre
3:1)− Y3(d

0
3:1)
∣∣S = 0

]
− E

[
Y2(d

pre
2:1)− Y2(d

0
2:1)
∣∣S = 0

]
.

Case 2: linear treatment effects. For some constant κ,

κ = E
[
Y2(d

pre
2:1)− Y2(d

0
2:1)
∣∣S = 0

]
− E [Y1(dpre)− Y1(d0)|S = 0]

κ = E
[
Y3(d

pre
3:1)− Y3(d

0
3:1)
∣∣S = 0

]
− E

[
Y2(d

pre
2:1)− Y2(d

0
2:1)
∣∣S = 0

]
.
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Case 3: concave treatment effects. For some constant κ,

3κ = E
[
Y2(d

pre
2:1)− Y2(d

0
2:1)
∣∣S = 0

]
− E [Y1(dpre)− Y1(d0)|S = 0]

κ = E
[
Y3(d

pre
3:1)− Y3(d

0
3:1)
∣∣S = 0

]
− E

[
Y2(d

pre
2:1)− Y2(d

0
2:1)
∣∣S = 0

]
.

Case 4: convex treatment effects. For some constant κ,

κ = E
[
Y2(d

pre
2:1)− Y2(d

0
2:1)
∣∣S = 0

]
− E [Y1(dpre)− Y1(d0)|S = 0]

3κ = E
[
Y3(d

pre
3:1)− Y3(d

0
3:1)
∣∣S = 0

]
− E

[
Y2(d

pre
2:1)− Y2(d

0
2:1)
∣∣S = 0

]
.

As shown in Table 1, when the trajectory of treatment effects is nonlinear, the asymptotic

bias of the linear-trend-adjusted estimators may be larger or smaller in magnitude than the

bias from the unadjusted estimators.

Finally, we point out that the choice of TLA, the set of periods used to estimate the linear

trend component, is important for this specification. This choice is subject to a bias-variance

trade-off: on the one hand, the more periods are used to estimate the linear component, the

more the strategy relies on a parametric functional form assumption, which is susceptible

to misspecification. On the other hand, estimating the linear adjustment using fewer peri-

ods is less sensitive to functional form assumptions, but is more sensitive to period-specific

idiosyncratic shocks in the trends, possibly resulting in imprecise estimators.

2.4 Settings with Staggered Treatments

In the standard DiD setting with equal baselines, a large literature has pointed out

that the standard TWFE and event-study specifications do not generally recover causally

interpretable parameters in staggered designs where different cohorts switch to treatment in

different periods (de Chaisemartin and D’Haultfœuille, 2020; Callaway and Sant’Anna, 2021;

Sun and Abraham, 2021; Borusyak et al., 2024). In such settings, these estimation approaches

involve valid comparisons of never-treated or not-yet-treated to just-treated units alongside

forbidden comparisons of just-treated units to previously-treated units – in other words, the

unequal-baseline comparisons discussed in this paper. The literature has proposed an array

of solutions, all of which, generally speaking, solve the problem by explicitly excluding the

forbidden comparisons (that is, the comparisons of units with unequal baselines) from the

computation of the estimators.

Based on these existing results and the ones in this paper, it is easy to see that in an

unequal-baseline setting with staggered adoption, the problems with the TWFE specification

are amplified because even the comparisons between switchers and stayers, which are valid

in a canonical staggered design, constitute forbidden comparisons in our setting.

A staggered-unequal-baseline design, however, offers a simple solution that allows the
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researcher to recover average treatment effects on switchers under a canonical parallel-trends

assumption without restricting treatment effect heterogeneity. For example, in a universal

adoption setting, the researcher can drop the always-treated cohort as well as the periods

after all switcher cohorts have entered treatment. In this smaller data set, the researcher can

then compare units that enter treatment in each period to the units that are not yet treated,

as suggested by Callaway and Sant’Anna (2021) and Sun and Abraham (2021).

3 Discussion and Practical Recommendations

Our results show that the ability of the unequal-baseline DiD approach to recover treat-

ment effects depends on the nature of treatment effects in the setting under study. The

unequal-baseline DiD is best applied to settings where (i) treatment effects are fairly imme-

diate and/or constant in nature, (ii) where treatment effects on the stayers have reached the

steady-state phase because a sufficiently long time has passed since the stayers were origi-

nally treated, or (iii) where treatment effects are immediate and the treatment on the stayers

applied only temporarily.

Two approaches can be taken to establish the nature of treatment effects. The most

straightforward, although often infeasible, solution is to obtain more data on earlier periods

where both groups had a common treatment status, as in the periods before t = 0 in Figure

1. Because groups start from the same treatment status in this pre-baseline periods, this

can be seen as a canonical DiD. In this case, it is possible to split the time periods into

three groups: one initial period in which both groups share the same treatment status, one

intermediate period in which they diverge, and a final period in which they converge or

further diverge. This allows the researcher to estimate both the effects of the initial policy

change and its reversal, and also test whether outcomes revert back to their initial trend in

converging settings.

Alternatively, economic reasoning and prior research on the topic can be used to form

expectations about treatment effect dynamics, and any frictions that may delay effects. In

some settings, researchers would naturally expect a constant treatment effect, perhaps, once

allowed for a short adjustment period. For example, an increase in capital gains tax rate is

expected to permanently decrease individual’s capital gains realizations. With the exception

of a plausibly short adjustment period (e.g. due to information frictions), the treatment

effect should be constant in nature (Agersnap and Zidar, 2021; Lavecchia and Tazhitdinova,

2024). In these cases, the approach will correctly estimate the average effect on the switchers

provided sufficient time has passed from the initial treatment to allow for the treatment effect

to apply. On the other hand, non-constant treatment effects are expected in settings where

treatment effects tend to accumulate or dissipate over time, or where adjustment frictions

are particularly large and lead to delayed responses. For example, non-constant treatment
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effects have been observed 10 years after policy changes in studies of knowledge production

and invention (e.g. Furman and Stern, 2011; Moser and Voena, 2012; Akcigit et al., 2022),

international migration (Kleven et al., 2013), labor outcomes (e.g. Walker, 2013), and health

outcomes (e.g. Greenstone and Hanna, 2014; Alsan and Goldin, 2019).

Another option is to impose assumptions on treatment effect heterogeneity and account

for it explicitly, such as the linear-treatment-effects Assumption 4 and the trends adjustment

considered in Section 2.3. It should be kept in mind that such assumption imposes parametric

restrictions that may result in misspecification, as discussed in Section 2.3.

On the other hand, in staggered DiD settings, the problem of unequal baselines can be

solved by dropping the stayers and relying on valid comparisons between switchers and not-

yet-switched, exploiting the fact that all switchers start from the same baseline treatment,

as discussed in Section 2.4.

Finally, in the context of canonical DiDs, Manski and Pepper (2018) and Rambachan

and Roth (2023) have proposed that researchers evaluate the sensitivity of treatment effect

estimates to deviations from the parallel-trends assumption, instead of imposing such an

assumption outright. This type of sensitivity analysis may be particularly useful in unequal-

baseline DiD settings because of the likely violations of the parallel-trends assumption. For

example, researchers may wish to assess the sensitivity of the estimates to different treatment

effect dynamics, instead of assuming that treatment effects are constant or linear over time.

We refer the reader to the aforementioned papers for details on this sensitivity analysis.
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Figure 1: Universal Adoption Settings

(a) Immediate Treatment Effects: Negative Treatment Effect Appears Immediately.

-2 -1 0 1 2 3

unobserved unobserved

Switchers

Stayers

∆true<0

∆est=0

(b) Delayed Treatment Effects: Negative Treatment Effect Appears Two Periods After Treatment.
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unobserved unobserved

Switchers

Stayers

∆true=0

∆est>0

Notes: This figure illustrates the possible evolution of outcomes for switchers (circles) and stayers (squares)
in a setting with a cumulative negative treatment effect. The treatment is imposed on stayers in periods
t = 0, 1, 2, 3, and on switchers in periods t = 2, 3. No treatment is imposed in periods t = −1,−2. Figure (a)
assumes that the negative treatment effect appears immediately, while Figure (b) assumes that the negative
treatment effect appears two periods after the onset of treatment. The ∆true identifies the true ATT, while
the ∆est identifies the estimated ATT.

The x-axis identifies time periods, and the y-axis identifies outcome values. It is assumed that the
researcher is only able to observe and use in his analysis data from periods t = 0, 1, 2, while the data from
earlier and later periods are unobservable. The solid blue lines identify the observed outcome paths for the
stayers and the switchers, while the dashed green line identifies the true counterfactual outcome path for the
switchers in the absence of treatment. The red dashed line identifies the predicted counterfactual path for the
switchers that a DiD would employ.
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Figure 2: Completed and Temporary Treatments

(a) Treatment on the Stayers Completes Prior to t = 0

-2 -1 0 1 2 3
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Switchers
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∆true= ∆est < 0

(b) Temporary but Immediate Treatments
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(c) Temporary but Non-Immediate Treatments
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Switchers

Stayers

∆true = 0

∆est > 0

Notes: This figure illustrates the possible evolution of outcomes for switchers (circles) and stayers (squares)
in a setting with a negative treatment effect. In figure (a), the treatment is imposed on stayers in periods
t = 0 and on switchers in periods t = 2, 3. It is assumed that the treatment effect is negative and immediate.
In Figure (b), the treatment is imposed on stayers in periods t = 0, and on switchers in periods t = 2, 3.
However, it is assumed that the treatment effect appears two days after the onset of treatment.

The ∆true identifies the true ATT, while the ∆est identifies the estimated ATT.
The x-axis identifies time periods, and the y-axis identifies outcome values. It is assumed that the

researcher is only able to observe and use in his analysis data from periods t = 0, 1, 2, while the data from
earlier and later periods are unobservable. The solid blue lines identify the observed outcome paths for the
stayers and the switchers, while the dashed green line identifies the true counterfactual outcome path for the
switchers in the absence of treatment. The red dashed line identifies the predicted counterfactual path for the
switchers that a DiD would employ.
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Figure 3: Policy Reversals and Nonconvergent Settings

(a) Policy Reversal Case with Immediate Treatment Effects
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(b) Nonconvergent Treatments with Immediate Treatment Effects
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|∆est| < |∆true|

Notes: This figure illustrates the possible evolution of outcomes for switchers (circles) and stayers (squares)
in a setting with a cumulative negative treatment effect. In Figure (a), the treatment is never imposed on the
stayers, and only imposed on the switchers in periods t = 0, 1. No treatment is imposed in periods t = −1,−2.
In Figure (b), the treatment is imposed on stayers in periods t = 0, 1, 2, 3, and a stronger treatment is imposed
on switchers in periods t = 2, 3. No treatment is imposed in periods t = −1,−2. The ∆true identifies the true
ATT, while the ∆est identifies the estimated ATT.

The x-axis identifies time periods, and the y-axis identifies outcome values. It is assumed that the
researcher is only able to observe and use in his analysis data from periods t = 0, 1, 2, while the data from
earlier and later periods are unobservable. The solid blue lines identify the observed outcome paths for the
stayers and the switchers, while the dashed green line identifies the true counterfactual outcome path for the
switchers in the absence of treatment. The red dashed line identifies the predicted counterfactual path for the
switchers that a DiD would employ.
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Figure 4: Empirical Illustration – Convergent Treatment Status: Jakobsen et al. (2020)

(a) Equal baseline status:
both control and treated are taxed

(b) Unequal baseline status:
treated are taxed but control are not

Notes: This figure reproduces (a) Figure IV and (b) Appendix Figure A.VII from Jakobsen et al. (2020). These
figures show the evolution of taxable wealth and the difference between treatment and control groups before
and after the 1989 reform that increased the exemption threshold for couples but not for single individuals.
Loosely speaking, in both figures, the treatment group consists of couples who were subject to wealth tax
before 1989 but not after 1989. In (a), the control group consists of single individuals who were subject to
wealth tax before and after 1989 – the “Singles” group, while in (b), the control group consists of couples
who were exempt from wealth tax both before and after 1989 – the “Below Range” group. In all figures, the
treatment group is shown in red dots, while the control group is shown in black squares.
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Figure 5: Empirical Illustration – Non-Convergent Treatment Status: Jakobsen et al. (2020)

Notes: This figure reproduces Figure VI from Jakobsen et al. (2020). These figures show the evolution of
taxable wealth and the difference between treatment and control groups before and after the 1989 reform
that reduced the wealth tax rate from 2.2% to 1% on the very wealthy – “the Unbound” group. The authors
compare wealthy individuals to a control group subject to a 0% marginal tax rate because of a tax ceiling
provision (“Det Vandrette Skatteloft”), both before and after 1989 – the “Bound” group. The treatment group
is shown in red dots, while the control group is shown in black squares.
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Table 1: Asymptotic bias - Event-Study vs Linear-Adjustment Estimators

Event Study Linear Adjustment
Estimator Estimator

Case 1: constant treatment effects 0 0
Case 2: linear treatment effects κ 0
Case 3: concave treatment effects κ −2κ
Case 4: convex treatment effects 3κ 2κ

Notes: This table illustrates how the asymptotic bias relates to the nature of treatment effects and the
estimator used. The asymptotic bias is calculated for four cases of treatment effects described in Section 2.3.
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APPENDIX

A Examples of Unequal-Baseline DiDs

Universal adoption. This setting has been explored in environmental economics to study

the energy effects of daylight saving time (DST) by Kotchen and Grant (2011), who exploit

a 2006 reform that resulted in a universal adoption of DST in Indiana. Prior to the studied

policy change, 77 counties did not practice DST while 15 did. In the post-treatment period,

all counties switched to DST. Sawada et al. (2022) study introduction of a formal, democratic

local school-based management (SBM) institution in rural Burkina Faso. This study com-

pares schools that implemented SBM in the first period to schools that implemented SBM in

the second period. In labor economics, Chemin and Wasmer (2009) study the employment

effects of working hour reductions. They exploit a change in working hours laws in France

that resulted in a switch from 39 hours per week to 35 in all areas of France except for

Alsace-Moselle where working hours decreased from a lower starting point.

Policy reversal. Bleemer (2022) studies the effects of race-based affirmative action bans on

student outcomes. This study compares outcomes of the underrepresented minority (URM)

applicants to the outcomes of non-URM students with similar prior academic opportunity

and preparation, before and after the 1998 affirmative action ban at California public uni-

versities, which removed preferential treatment for URMs. Slattery et al. (2023) study how

the cancellation of independent campaign contribution bans due to Citizens United ruling

affected state tax policies, by comparing tax policies in states that had bans to states that

did not. Cao and Chen (2022) study the abandonment of the Grand Canal in China on

rebellions. Their treatment group consists of counties through which the canal ran before it

was abandoned, while the control group includes distant counties. Grönqvist et al. (2020)

study the effects of leaded gasoline phaseout by comparing life outcomes of children born in

Swedish neighborhoods with high vs low lead exposures, before and after 1981, when lead

levels per liter of gasoline were rapidly reduced in all areas of Sweden. Relatedly, Bleakley

(2010), Cutler et al. (2010), Lucas (2010), and Rossi and Villar (2020) study malaria eradi-

cation campaigns and exploit variation in malaria prevalence prior to anti-malaria programs

as a measure of intensity of treatment.

Non-convergent settings. This version of DiD is ubiquitously used by empirical tax

economists to measure the causal effects of taxes. For example, Kleven and Schultz (2014)

measure the causal effects of income taxes while Jakobsen et al. (2020) measure the effects

of wealth taxes by comparing individuals in different income tax brackets who experience

differential changes in relative MTRs. Yagan (2015) studies the effect of dividend taxes
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on investment by comparing firms that are subject to dividend taxes (C-corporations) to

firms that are not (S-corporations). Zwick and Mahon (2017) study the effects of the bonus

depreciation scheme on investment by exploiting differences in the relative magnitude of

incentives, while Fuest et al. (2018) study the effect of corporate taxes on wages using variation

in local corporate rates. In all these studies, treatment and control groups experience different

levels of taxes in the baseline period and the post-period. Similarly, minimum wage studies

often compare workers residing in states with different minimum wages or workers residing

in the same state but subject to different minimum wage regimes (e.g., Dube et al., 2010;

Giuliano, 2013; Cengiz et al., 2019; Jardim et al., 2022). In such comparisons, workers in the

treatment and control groups are typically subject to different minimum wage rules before

and after the reform.

B Proofs

Notation. For any variable Ait and any subset T ⊆ {1, 2, . . . , T} of cardinality |T |, define
Āi(T ) =

∑
t∈T Ait/|T |, Ãt =

∑
iAit/n, Ā(T ) =

∑
i

∑
t∈T Ait/(n|T |) and Äit(T ) = Ait −

Āi(T ) − Ãt + Ā(T ). We also denote the population counterpart of the double-demeaned

Äit(T ) as Ǎit(T ) = Ait− Āi(T )−E[Ait] +E[Āi(T )]. Also let Xℓ
it = 1(t = ℓ)Si and Zit = tSi.

To reduce notation we will not distinguish between lead and lag coefficients. As discussed in

the paper, we consider the event-study regression:

Yit = αi + δt +
∑
ℓ̸=t̃

βℓX
ℓ
it + εit

where

Ẍℓ
it(T ) = (Si − S̄)

(
1(t = ℓ)− 1

|T |

)
and the event-study regression with a linear adjustment:

Yit = αi + δt +
∑
ℓ/∈TLA

βLA
ℓ Xℓ

it + γZit + uit

where

Z̈it(T ) = (Si − S̄)

(
t−

∑
t∈T

t

|T |

)
and where TLA is the subset of periods used to estimate the linear trend and TLA = |TLA| (see
Section 2.3 for details).
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B.1 Proof of Proposition 1

The population coefficients {βℓ}ℓ are characterized by the system of equations:

0 =
∑
t

E

(Y̌it −∑
ℓ̸=t̃

βℓX̌
ℓ
it)X

ℓ
it


whereas the estimators {β̂ℓ}ℓ̸=t̃ are characterized by the sample analog:

0 =
∑
i

∑
t

(Ÿit −
∑
ℓ̸=t̃

β̂ℓẌ
ℓ
it)X

ℓ
it =

∑
i

(Ÿiℓ − β̂ℓẌ
ℓ
iℓ −

∑
m ̸=ℓ,t̃

β̂mẌm
iℓ )Si

We show the derivation for the OLS estimators, as the one for the population coefficients

follows an identical reasoning replacing sample averages by expectations. We have that:

0 =
∑
i

ŸiℓSi − β̂ℓnS̄(1− S̄)

(
1− 1

T

)
+
∑
m̸=ℓ,t̃

β̂mnS̄(1− S̄)
1

T

from which

β̂ℓ =

∑
i ŸiℓSi

nS̄(1− S̄)
+

1

T

∑
ℓ̸=t̃

β̂ℓ. (5)

Summing over ℓ ̸= t̃,

∑
ℓ ̸=t̃

β̂ℓ =
∑
ℓ ̸=t̃

∑
i ŸiℓSi

nS̄(1− S̄)
+

T − 1

T

∑
ℓ̸=t̃

β̂ℓ

and thus
1

T

∑
ℓ̸=t̃

β̂ℓ = −
∑

i Ÿit̃Si

nS̄(1− S̄)

using that
∑

ℓ̸=t̃ Ÿiℓ =
∑

ℓ Ÿiℓ − Ÿit̃ = −Ÿit̃. Plugging back into (5),

β̂ℓ =

∑
i ŸiℓSi

nS̄(1− S̄)
−
∑

i Ÿit̃Si

nS̄(1− S̄)
=

∑
i(Ÿiℓ − Ÿit̃)Si

nS̄(1− S̄)
.

Finally, use that Ÿiℓ − Ÿit̃ = Yiℓ − Yit̃ −
∑

i(Yiℓ − Yit̃)/n to get

β̂ℓ =

∑
i(Yiℓ − Yit̃)(Si − S̄)

nS̄(1− S̄)
=

∑
i(Yiℓ − Yit̃)Si∑

i Si
−
∑

i(Yiℓ − Yit̃)(1− Si)∑
i(1− Si)
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and by the law of large numbers, as n → ∞, β̂ℓ →P βℓ = E[Yℓ − Yt̃|S = 1]−E[Yℓ − Yt̃|S = 0].

Next, if ℓ ≥ t∗,

βℓ = E[Yℓ(dpost
ℓ,t∗ : dpre

t∗−1,1)− Yt̃(d
pre

t̃:1
)|S = 1]− E[Yℓ(d0

ℓ:1)− Yt̃(d
0
t̃:1
)|S = 0]

= E[Yℓ(dpost
ℓ:t∗ ,d

pre
t∗−1:1)− Yℓ(d

pre
ℓ:1)|S = 1]

+ E[Yℓ(dpre
ℓ:1)− Yt̃(d

pre

t̃:1
)|S = 1]− E[Yℓ(dpre

ℓ:1)− Yt̃(d
pre

t̃:1
)|S = 0]

+ E[Yℓ(dpre
ℓ:1)− Yℓ(d

0
ℓ:1)|S = 0]− E[Yt̃(d

pre

t̃:1
)− Yt̃(d

0
t̃:1
)|S = 0]

and when ℓ < t∗,

βℓ = E[Yℓ(dpre
ℓ:1)− Yt̃(d

pre

t̃:1
)|S = 1]− E[Yℓ(dpre

ℓ:1)− Yt̃(d
pre

t̃:1
)|S = 0]

+ E[Yℓ(dpre
ℓ:1)− Yℓ(d

0
ℓ:1)|S = 0]− E[Yt̃(d

pre

t̃:1
)− Yt̃(d

0
t̃:1
)|S = 0].

which completes the proof. □

B.2 Proof of Proposition 2

As before, we only show the proof for the OLS estimators, since the proof for the linear

projection coefficients is analogous after replacing sample averages by expectations. The

estimators {β̂LA
ℓ }ℓ/∈TLA and γ̂ are characterized by the system of equations:

0 =
∑
i

∑
t

(Ÿit −
∑
ℓ/∈TLA

β̂LA
ℓ Ẍℓ

it − γ̂Z̈it)X
ℓ
it =

∑
i

∑
t

(Ÿit − β̂LA
ℓ Ẍℓ

it −
∑

m̸=ℓ,m/∈TLA

β̂LA
m Ẍm

it − γ̂Z̈it)X
ℓ
it

0 =
∑
i

∑
t

(Yit −
∑
ℓ/∈TLA

β̂LA
ℓ Xℓ

it − γ̂Zit)Z̈it

From the first equation,

0 =
∑
i

(Ÿiℓ − β̂LA
ℓ Ẍℓ

iℓ −
∑

m ̸=ℓ,m/∈TLA

β̂LA
m Ẍm

iℓ − γ̂Z̈iℓ)X
ℓ
iℓ

=
∑
i

ŸiℓSi − β̂LA
ℓ

∑
i

Ẍℓ
iℓX

ℓ
iℓ −

∑
m ̸=ℓ,m/∈TLA

β̂LA
m

∑
i

Ẍm
iℓ X

ℓ
iℓ − γ̂

∑
i

Z̈iℓX
ℓ
iℓ

=
∑
i

ŸiℓSi − nS̄(1− S̄)β̂LA
ℓ

(
1− 1

T

)
+

nS̄(1− S̄)

T

∑
m ̸=ℓ,m/∈TLA

β̂LA
m − γ̂(ℓ− t̄)nS̄(1− S̄)

where t̄ =
∑

t t/T = (T + 1)/2, from which

β̂LA
ℓ =

∑
i ŸiℓSi

nS̄(1− S̄)
+

1

T

∑
ℓ/∈TLA

β̂LA
ℓ − γ̂ (ℓ− t̄) .
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Summing over ℓ /∈ TLA,

∑
ℓ/∈TLA

β̂LA
ℓ =

∑
ℓ/∈TLA

∑
i ŸiℓSi

nS̄(1− S̄)
+

T − TLA

T

∑
ℓ/∈TLA

β̂LA
ℓ − γ̂

∑
ℓ/∈TLA

(ℓ− t̄)

so that

1

T

∑
ℓ/∈TLA

β̂LA
ℓ = −

∑
i Si

(∑
ℓ∈TLA Ÿiℓ/TLA

)
nS̄(1− S̄)

− γ̂

TLA

∑
ℓ/∈TLA

(ℓ− t̄)

and thus letting ¯̈Y LA
i =

∑
ℓ∈TLA Ÿiℓ/TLA,

β̂LA
ℓ =

∑
i ŸiℓSi

nS̄(1− S̄)
−

∑
i Si

(∑
ℓ∈TLA Ÿiℓ/TLA

)
nS̄(1− S̄)

− γ̂

TLA

∑
ℓ/∈TLA

(ℓ− t̄)− γ̂ (ℓ− t̄)

=

∑
i(Ÿiℓ −

¯̈Y LA
i )Si

nS̄(1− S̄)
− γ̂ (ℓ− t̄LA)

=

∑
i(Yiℓ − Ȳ LA

i )(Si − S̄)

nS̄(1− S̄)
− γ̂ (ℓ− t̄LA)

where t̄LA =
∑

t∈TLA t/TLA and Ȳ LA
i =

∑
ℓ∈TLA Yiℓ/TLA. Next, plugging this expression into

the first order condition for γ̂,

0 =

∑
i

∑
t Yit(Si − S̄)(t− t̄)

nS̄(1− S̄)
−
∑
ℓ/∈TLA

β̂LA(ℓ− t̄)− γ̂
∑
t

(t− t̄)t

=

∑
i

∑
t Yit(Si − S̄)(t− t̄)

nS̄(1− S̄)
−
∑
ℓ/∈TLA

∑
i(Yiℓ − Ȳ LA

i )(Si − S̄)(ℓ− t̄)

nS̄(1− S̄)

+ γ̂
∑
ℓ/∈TLA

(ℓ− t̄LA) (ℓ− t̄)− γ̂
∑
t

(t− t̄)t

=
∑
i

Si − S̄

nS̄(1− S̄)

∑
t

Yit(t− t̄)−
∑
t/∈TLA

(Yit − Ȳ LA
i )(t− t̄)


+ γ̂

∑
t/∈TLA

(t− t̄LA) (t− t̄)−
∑
t

(t− t̄)t


=

∑
i(Si − S̄)

∑
t∈TLA Yit(t− t̄LA)

nS̄(1− S̄)
− γ̂TLAVLA
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where VLA =
∑

t∈TLA(t− t̄LA)
2/TLA and where the last equality uses that:∑

t/∈TLA

(t− t̄LA) (t− t̄)−
∑
t

(t− t̄)t =
∑
t/∈TLA

(t− t̄LA) (t− t̄)−
∑
t

(t− t̄)(t− t̄LA)

= −
∑
t∈TLA

(t− t̄LA) (t− t̄)

= −
∑
t∈TLA

(t− t̄LA) t = −TLAVLA

and ∑
t

Yit(t− t̄)−
∑
t/∈TLA

(Yit − Ȳ LA
i )(t− t̄) =

∑
t∈TLA

Yit(t− t̄) + Ȳ LA
i

∑
t/∈TLA

(t− t̄)

=
∑
t∈TLA

Yit(t− t̄)− Ȳ LA
i

∑
t∈TLA

(t− t̄)

=
∑
t∈TLA

Yit(t− t̄)− 1

TLA

∑
t∈TLA

Yit
∑
t∈TLA

(t− t̄)

=
∑
t∈TLA

Yit(t− t̄LA).

Finally, recall that TLA = {tm, tm + 1, . . . , tM − 1, tM} and note that for tm ≤ t ≤ tM ,

Yit = Yitm + 1(t > tm)
∑tM

s=tm+1∆Yis where ∆Yis = Yis − Yis−1, and thus

∑
t∈TLA

Yit(t− t̄LA) =

tM∑
t=tm

(
Yitm + 1(t > tm)

tM∑
s=tm+1

∆Yis

)
(t− t̄LA)

=

tM∑
t=tm+1

tM∑
s=tm+1

∆Yis(t− t̄LA)

=

tM∑
s=tm+1

tM∑
t=s

∆Yis(t− t̄LA)

=

tM∑
s=tm+1

∆Yis

tM∑
t=s

(t− t̄LA)

where the order of summation is reversed using that {tm + 1 ≤ t ≤ tM , tm + 1 ≤ s ≤ t} is

equivalent to {tm + 1 ≤ s ≤ tM , s ≤ t ≤ tM}. Now,

tM∑
t=s

(t− t̄LA) =
tM (tM + 1)

2
− s(s− 1)

2
− t̄LA(tM − s+ 1)

=
tM (tM + 1)

2
− s(s− 1)

2
− tM + tm

2
(tM + 1− s)
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=
tM (tM + 1)

2
− s(s− 1)

2
− tM (tM + 1)

2
+ s

tM
2

− tm
2
(tM + 1− s)

=
1

2
(s− tm)(tM + 1− s).

Collecting these results,

γ̂ =
∑
i

(Si − S̄)

nS̄(1− S̄)

tM∑
t=tm+1

∆Yitω
γ
t =

tM∑
t=tm+1

ωγ
t

(∑
i∆YitSi∑

i Si
−
∑

i∆Yit(1− Si)∑
i(1− Si)

)

where

ωγ
t =

(t− tm)(tM + 1− t)

2TLAVLA
.

which is non-negative for tm ≤ t ≤ tM . To see that the weights sum to one, first consider∑tM
t=tm+1(t− tm)(tM +1− t). Define u = t− tm so that tm +1 ≤ t ≤ tM ⇔ 1 ≤ u ≤ tM − tm

or equivalently 1 ≤ u ≤ TLA − 1 where TLA = tM − tm + 1. Next, noting that u = t − tm

implies tM + 1− t = TLA − u,

tM∑
t=tm+1

(t− tm)(tM + 1− t) =

TLA−1∑
u=1

u(TLA − u)

=
T 2
LA(TLA − 1)

2
− (TLA − 1)TLA(2TLA − 1)

6

=
(TLA − 1)TLA

2

(
TLA − 2TLA − 1

3

)
=

(TLA − 1)TLA(TLA + 1)

6

=

(
TLA + 1

3

)
.

By a similar argument,

∑
t∈TLA

(t− t̄LA)
2 =

∑
t∈T

t(t− t̄) =

tM∑
t=tm

(t− tm)(t− tm − (t̄LA − tm))

=

TLA−1∑
u=0

u

(
u− TLA − 1

2

)

=

TLA−1∑
u=1

u

(
u− TLA − 1

2

)
=

(TLA − 1)TLA(TLA + 1)

6
− TLA(TLA − 1)2

4

=
(TLA − 1)TLA(TLA + 1)

12
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=
1

2

(
TLA + 1

3

)
which gives the first result. Next, for β̂LA

ℓ ,

β̂LA
ℓ =

∑
i(Yiℓ − Ȳ LA

i )(Si − S̄)

nS̄(1− S̄)
− γ̂ (ℓ− t̄LA)

=
∑
i

(Si − S̄)

nS̄(1− S̄)

(
Yiℓ − Ȳ LA

i − (ℓ− t̄LA)

tM∑
t=tm+1

∆Yitω
γ
t

)

but

Ȳ LA
i =

1

TLA

tM∑
t=tm

Yit =
1

TLA

tM∑
t=tm

(
Yitm + 1(t > tm)

t∑
s=tm+1

∆Yis

)
= Yitm+

tM∑
s=tm+1

∆Yis
(tM + 1− s)

TLA

so

β̂LA
ℓ =

∑
i

(Si − S̄)

nS̄(1− S̄)

(
Yiℓ − Yitm −

tM∑
t=tm+1

∆Yit

(
(tM + 1− t)

TLA
+ (ℓ− t̄LA)ω

γ
t

))

=
∑
i

(Si − S̄)

nS̄(1− S̄)

(
Yiℓ − Yitm −

tM∑
t=tm+1

∆Yitω
ℓ
t

)

where

ωℓ
t =

(tM + 1− t)

TLA
+ (ℓ− t̄LA)ω

γ
t

which is non-negative for tm ≤ t ≤ tM and where

tM∑
tm+1

ωℓ
t =

tM∑
tm+1

(tM + 1− t)

TLA
+ ℓ− t̄LA = (tM − tm)

(tM + 1)

TLA
− t̄LA +

tm
TLA

+ ℓ− t̄LA

=
TLA − 1

TLA
(tM + 1)− 2t̄LA +

tm
TLA

+ ℓ = tM + 1− tM + 1− tm
TLA

− tM − tm + ℓ

= ℓ− tm

and the result follows by a standard application of the law or large numbers. Next, plugging

in the potential outcomes,

γ =

tM∑
t=tm+1

ωγ
t

(
E[Yt(dpre

t:1 )− Yt−1(d
pre
t−1:1)|S = 1]− E[Yt(d0

t:1)− Yt−1(d
0
t−1:1)|S = 0]

)
.
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Similarly,

βLA
ℓ = E[Yiℓ − Yitm |Si = 1]− E[Yiℓ − Yitm |Si = 0]−

tM∑
t=tm+1

ωℓ
t (E[∆Yit|Si = 1]− E[∆Yit|Si = 0]) .

Then for ℓ < t∗, ℓ /∈ TLA,

βLA
ℓ = E[Yℓ(dpre

ℓ:1)− Ytm(d
pre
tm:1)|S = 1]− E[Yℓ(d0

ℓ:1)− Ytm(d
0
tm:1)|S = 0]

−
tM∑

t=tm+1

ωℓ
t

(
E[Yt(dpre

t:1 )− Yt−1(d
pre
t−1:1)|S = 1]− E[Yt(d0

t:1)− Yt−1(d
0
t−1:1)|S = 0]

)
and for ℓ ≥ t∗,

βLA
ℓ = E

[
Yℓ(d

post
ℓ:t∗ ,d

pre
t∗−1:1)− Yℓ(d

pre
ℓ:1)
∣∣S = 1

]
+ E

[
Yℓ(d

pre
ℓ:1)− Ytm(d

pre
tm:1)

∣∣S = 1
]
− E

[
Yℓ(d

0
ℓ:1)− Ytm(d

0
tm:1)

∣∣S = 0
]

−
tM∑

t=tm+1

ωℓ
t

(
E[Yt(dpre

t:1 )− Yt−1(d
pre
t−1:1)|S = 1]− E[Yt(d0

t:1)− Yt−1(d
0
t−1:1)|S = 0]

)
.

Finally note that when the difference in trends is constant,

βLA
ℓ = E[Yiℓ(dpost, dpre)− Yiℓ(dpre, dpre)|Si = 1]

+ E[Yiℓ(dpre, dpre)− Yitm(dpre)|Si = 1]− E[Yiℓ(d0, d0)− Yitm(d0)|Si = 0]

−
tM∑

t=tm+1

ωℓ
t (E[∆Yit(dpre)|Si = 1]− E[∆Yit(d0)|Si = 0])

= E[Yiℓ(dpost, dpre)− Yiℓ(dpre, dpre)|Si = 1] + κ(ℓ− tm)− κ

tM∑
t=tm+1

ωℓ
t

= E[Yiℓ(dpost, dpre)− Yiℓ(dpre, dpre)|Si = 1]

using that
∑tM

t=tm+1 ω
ℓ
t = ℓ− tm, which completes the proof. □

B.3 Proof of Corollary 1

Under Assumption 4, for ℓ ≥ t∗,

βLA
ℓ = E

[
Yℓ(d

post
ℓ:t∗ ,d

pre
t∗−1:1)− Yℓ(d

pre
ℓ:1)
∣∣S = 1

]
+ E

[
Yℓ(d

pre
ℓ:1)− Ytm(d

pre
tm:1)

∣∣S = 1
]
− E

[
Yℓ(d

0
ℓ:1)− Ytm(d

0
tm:1)

∣∣S = 0
]

−
tM∑

t=tm+1

ωℓ
t

(
E[Yt(dpre

t:1 )− Yt−1(d
pre
t−1:1)|S = 1]− E[Yt(d0

t:1)− Yt−1(d
0
t−1:1)|S = 0]

)
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= E
[
Yℓ(d

post
ℓ:t∗ ,d

pre
t∗−1:1)− Yℓ(d

pre
ℓ:1)
∣∣S = 1

]
+ κ(ℓ− tm)− κ

tM∑
t=tm+1

ωℓ
t

= E
[
Yℓ(d

post
ℓ:t∗ ,d

pre
t∗−1:1)− Yℓ(d

pre
ℓ:1)
∣∣S = 1

]
and similarly for ℓ < t∗, ℓ /∈ TLA, βLA

ℓ = 0. □
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