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Abstract

This supplemental appendix provides additional discussions and results not included in

the paper to conserve space.
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A1 Endogenous Effects and Structural Models

Consider the structural model:

Yig = ϕ(Dig,D(i)g) + γȲ (i)
g + uig.

which assumes additive separability between the functions that depend on treatment assign-

ments and on outcomes. In this model, ϕ(1,dg)− ϕ(0,dg), measures the direct effect of the

treatment, ϕ(d,dg)− ϕ(d, d̃g) measures the spillover effects of peers’ treatments, commonly

known as exogenous or contextual effects, and γ measures the endogenous effect.

Suppose that the assumptions from Corollary 1 hold, so that the treatment vector is

randomly assigned, peers are exchangeable and spillover effects are linear. By exchangeability,

ϕ(Dig,D(i)g) = ϕ(Dig, Sig) =

ng∑
s=0

β̃s1(Sig = s)(1−Dig) +

ng∑
s=0

δ̃s1(Sig = s)Dig

= β̃0 + (δ̃0 − β̃0)Dig +

ng∑
s=1

(β̃s − β̃0)1(Sig = s)(1−Dig)

+

ng∑
s=1

(δ̃s − δ̃0)1(Sig = s)Dig

where the second equality is without loss of generality because all the variables are discrete,

and where β̃s = ϕ(0, s), δ̃s = ϕ(1, s). Let α = β̃0, β = δ̃0 − β̃0, γ
0
s = β̃s − β̃0, γ

1
s = δ̃s − δ̃0

and rewrite the above model as:

ϕ(Dig, Sig) = α+ βDig +

ng∑
s=1

γ0s1(Sig = s)(1−Dig) +

ng∑
s=1

γ1s1(Sig = s)Dig.

Next, by linearity of spillover effects, γd0 = κds and
∑ng

s=1 γ
d
s1(Sig = s) = κd

∑ng

s=1 s1(Sig =

s) = κdSig. Therefore,

Yig = α+ βDig + κ0Sig(1−Dig) + κ1SigDig + γȲ (i)
g + uig.

In addition, suppose that contextual effects are equal between treated and controls so that

κ0 = κ1 = κ. The model then reduces to:

Yig = α+ βDig + κSig + γȲ (i)
g + uig = α+ βDig + κngD̄

(i)
g + γȲ (i)

g + uig.

Noting that κ can be a function of ng, κ = κ(ng), let θ = κ(ng)ng where the dependence on

ng is left implicit, so that:

Yig = α+ βDig + θD̄(i)
g + γȲ (i)

g + uig

which is a standard LIM model where β is the direct effect of the treatment, θ is the exogenous
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or contextual effect and γ is the endogenous effect.

Next, note that Ȳ
(i)
g =

ng+1
ng

Ȳg − Yig

ng
which implies that:

Yig

(
1 +

γ

ng

)
= α+ βDig + θD̄(i)

g + γ

(
ng + 1

ng

)
Ȳg + uig

and

Ȳg = α+ βD̄g + θD̄g + γȲg + ūg.

The last equation implies that, as long as γ ̸= 1,

Ȳg =
α

1− γ
+

β + θ

1− γ
D̄g +

ūg
1− γ

=
α

1− γ
+

β + θ

1− γ

(
1

ng + 1

)
Dig +

β + θ

1− γ

(
ng

ng + 1

)
D̄(i)

g +
ūg

1− γ

so plugging back:

Yig

(
1 +

γ

ng

)
= α+ γ

(
ng + 1

ng

)
α

1− γ

+ βDig + γ

(
ng + 1

ng

)
β + θ

1− γ

(
1

ng + 1

)
Dig

+ θD̄(i)
g + γ

(
ng + 1

ng

)
β + θ

1− γ

(
ng

ng + 1

)
D̄(i)

g

+ uig + γ

(
ng + 1

ng

)
ūg

1− γ

After some simplifications,

Yig

(
1 +

γ

ng

)
=

[
1 +

(
ng + 1

ng

)
γ

1− γ

]
α+

[
β +

γ

1− γ
· β + θ

ng

]
Dig

+

[
θ + γ · β + θ

1− γ

]
D̄(i)

g + uig + γ

(
ng + 1

ng

)
ūg

1− γ

and thus

Yig = α∗ + β∗Dig + θ∗D̄(i)
g + u∗ig

where

α∗ =

[
1 +

(
ng + 1

ng

)
γ

1− γ

](
1 +

γ

ng

)−1

α

β∗ =

[
β +

γ

1− γ
· β + θ

ng

](
1 +

γ

ng

)−1

θ∗ =

[
θ + γ · β + θ

1− γ

](
1 +

γ

ng

)−1

u∗ig = uig

(
1 +

γ

ng

)−1

+ γ

(
ng + 1

ng

)(
1 +

γ

ng

)−1 ūg
1− γ

.
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In this context, random assignment of the treatment implies that E[uig|Dig,D(i)g] = 0 and

hence the reduced-form parameters (α∗, β∗, θ∗) are identified. As in any structural LIM

model, however, the structural parameters (α, β, θ, γ) are not identified without further as-

sumptions.

A2 Assignment Mechanism for 2SR-FM

In a 2SR-FM assignment mechanism, given a group size n+1 groups are assigned to receive

0, 1, 2, . . . , n + 1 treated units with probabilities q0, q1, . . . , qn+1. Treatment assignments in

this case are given by Aig = (Dig, Tg) where Dig ∈ {0, 1} and Tg ∈ {0, 1, . . . , n + 1}, and

π(a) = P[Dig = d|Tg = t]qt = qt

(
t

n+1

)d (
1− t

n+1

)1−d
. When n + 1 is odd, the choice of qt

is determined by the following system of equations:

qj = qn+1−j , j ≤ n

2

qj =
(n+ 1)q0

j
, 0 < j ≤ n

2∑
j

qj = 1.

The first set of equations imposes symmetry, that is, P[Tg = 0] = P[Tg = n + 1] and so on.

The second set of equations makes the expected sample size in the smallest assignment in

each group (untreated units in high-intensity treatment groups and vice versa) equal to the

expected sample size of pure controls. The solution to this system is given by:

q0

1 + (n+ 1)

n
2∑

j=1

1

j

 =
1

2

and the remaining probabilities are obtained from the previous relationships. If n+1 is even,

the system of equations is given by:

qj = qn+1−j , j ≤ n− 1

2

qj =
(n+ 1)q0

j
, 0 < j ≤ n− 1

2∑
j

qj = 1.

and the solution is:

q0

2 + (n+ 1)

n+1
2

−1∑
j=1

1

j

 =
1

2
.
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A3 Implications for Experimental Design

Theorem 4 shows that the accuracy of the standard normal to approximate the distribution of

the standardized statistic depends on the treatment assignment mechanism through πn. The

intuition behind this result is that the amount of information to estimate each µ(a) depends

on the number of observations facing assignment a, and this number depends on π(a). When

the goal is to estimate all the µ(a) simultaneously, the binding factor will be the number of

observations in the smallest cell, controlled by πn. When an assignment sets a value of πn

that is very close to zero, the normal distribution may provide a poor approximation to the

distribution of the estimators.

When designing an experiment to estimate spillover effects, the researcher can choose

distribution of treatment assignments π(·). Theorem 4 provides a way to rank different

assignment mechanisms based on their rate of the approximation, which gives a principled

way to choose between different assignment mechanisms.

To illustrate these issues, consider the case of an exchangeable exposure mapping An =

{(d, s) : d = 0, 1, s = 0, 1, . . . , n}. The results below compare two treatment assignment

mechanisms: simple random assignment (SR) and two-stage randomization with fixed mar-

gins (2SR-FM). See Section B for further details on this design.

Corollary A1 (SR) Under simple random assignment, if:

n+ 1

logG
→ 0, (1)

then log |An|
Gπn

→ 0 and |An|
G(n+1)πn

= O(1).

Corollary A2 (2SR-FM) Under the 2SR-FM mechanism described in Section C, if:

log(n+ 1)

logG
→ 0, (2)

then log |An|
Gπn

→ 0 and |An|
G(n+1)πn

= O(1).

In qualitative terms, both results imply that estimation and inference for spillover effects

requires group size to be small relative to the total number of groups. Thus, these results

formalize the requirement of “many small groups” that is commonly invoked, for example,

when estimating LIM models.

Corollary A1 shows that when the treatment is assigned using simple random assignment,

group size has to be small relative to logG. Given the concavity of the log function, this is

a strong requirement. Hence, groups have to be very small relative to the sample size for

inference to be asymptotically valid. The intuition behind this result is that under a SR, the

probability of the tail assignments (0, 0) and (1, n) decreases exponentially fast with group

size.
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On the other hand, Corollary A2 shows that a 2SR-FM mechanism reduces the require-

ment to log(n+ 1)/ logG ≈ 0, so now the log of group size has to be small compared to the

log of the number of groups. This condition is much more easily satisfied, which in practical

terms implies that a 2SR-FM mechanism can handle larger groups compared to SR. The

intuition behind this result is that, by fixing the number of treated units in each group, a

2SR-FM design has better control on how small the probabilities of each assignment can be,

hence facilitating the estimation of the tail assignments. Also note that Condition (2) can

be replaced by n log n/G → 0, n2/G = O(1).

A4 Unequally-Sized Groups

To explicitly account for different group sizes, let n (the total number of peers in each group)

take values in N = {n1, n2, . . . , nK} where nk ≥ 1 for all k and n1 < n2 < . . . < nK . Let

the potential outcome be Yig(n, d, s(n)) where n ∈ N and s(n) ∈ {0, 1, 2, . . . , n}. Let Ng

be the observed value of n, Sig(n) =
∑n

j ̸=iDjg and Sig =
∑K

k=1 Sig(nk)1(Ng = nk). The

independence assumption can be modified to hold conditional on group size:

{Yig(n, d, s(n)) : d = 0, 1, s(n) = 0, 1, . . . , n}ni=1 ⊥⊥ Dg(n))|Ng = n

where Dg(n) is the vector of all treatment assignments when the group size is n+ 1.

Under this assumption, we have that for n ∈ N and s ≤ n,

E[Yig|Dig = d, Sig = s,Ng = n] = E[Yig(n, d, s)].

The average observed outcome conditional on Ng = n can be written as:

E[Yig|Dig, Sig, Ng = n] = E[Yig(n, 0, 0)] + τ0(n)Dig

+

n∑
s=1

θ0(s, n)1(Sig = s)(1−Dig)

+
n∑

s=1

θ1(s, n)1(Sig = s)Dig

The easiest approach is to simply run separate analyses for each group size and estimate

all the effects separately. In this case, it is possible to test whether spillover effects are

different in groups with different sizes. The total number of parameters in this case is given

by
∑K

k=1(nk + 1).

In practice, however, there may be cases in which group size has a rich support with

only a few groups at each value n, so separate analyses may not be feasible. In such a

setting, a possible solution is to impose an additivity assumption on group size. According

to this assumption, the average direct and spillover effects do not change with group size.

For example, the spillover effect of having one treated neighbor is the same in a group with
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two or three units. Under this assumption,

E[Yig|Dig, Sig, Ng] =
∑
n∈Ng

α(n)1(Ng = ng) + τ0Dig

+

Ng∑
s=1

θ0(s)1(Sig = s)(1−Dig)

+

Ng∑
s=1

θ1(s)1(Sig = s)Dig

where the first sum can be seen in practice as adding group-size fixed effects. Then, the

identification results and estimation strategies in the paper are valid after controlling for

group-size fixed effects. Note that in this case the total number of parameters to estimate is

nK +K − 1 where nK is the size of the largest group and K is the total number of different

group sizes.

Another possibility is to assume that for any constant c ∈ N, Yig(c·n, d, c·s) = Yig(n, d, s).

This assumption allows us to rewrite the potential outcomes as a function of the ratio of

treated peers, Yig(d, s/n). Letting Pig = Sig/Ng, all the parameters can be estimated by

running a regression including Dig, 1(Pig = p) for all possible values of p > 0 (excluding

p = 0 to avoid perfect collinearity) and interactions. In this case, the total number of

parameters can be bounded by n1 +
∑K

k=2(nk − 1). Note that assuming that the potential

outcomes depend only on the proportion of treated siblings does not justify including the

variable Pig linearly, as commonly done in linear-in-means models.

A5 Including Covariates

There are several reasons why one may want to include covariates when estimating direct

and spillover effects. First, pre-treatment characteristics may help reduce the variability of

the estimators and decrease small-sample bias, which is standard practice when analyzing

randomly assigned programs. Covariates can also help get valid inference when the assign-

ment mechanisms stratifies on baseline covariates. This can be done by simply augmenting

Equation (8) with a vector of covariates γ ′xig which can vary at the unit or at the group level.

The covariates can also be interacted with the treatment assignment indicators to explore

effect heterogeneity across observable characteristics (for example, by separately estimating

effects for males and females.

Second, exogenous covariates can be used to relax the mean-independence assumption in

observational studies. More precisely, if Xg is a matrix of covariates, a conditional mean-

independence assumption would be E[Yig(d,dg)|Xg,Dg] = E[Yig(d,dg)|Xg] which is a ver-

sion of the standard unconfoundeness condition. The vector of covariates can include both

individual-level and group-level characteristics.

Third, covariates can be included to make an exposure mapping more likely to be cor-
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rectly specified. For instance, the exchangeability assumption can be relaxed by assuming

it holds after conditioning on covariates, so that for any pair of treatment assignments dg

and d̃g with the same number of ones, E[Yig(d,dg)|Xg] = E[Yig(d, d̃g)|Xg]. As an example,

exchangeability can be assumed to hold for all siblings with the same age, gender or going

to the same school.

All the identification results in the paper can be adapted to hold after conditioning on

covariates. In terms of implementation, when the covariates are discrete the parameters of

interest can be estimated at each possible value of the matrix Xg, although this strategy can

worsen the dimensionality problem. Alternatively, covariates can be included in a regression

framework after imposing parametric assumptions, for example, assuming the covariates enter

linearly.

A6 Proofs of Technical Lemmas

Proof of Lemma A1 Take ε > 0, then

|An| max
a∈An

P
[∣∣∣∣ π̂(a)π(a)

− 1

∣∣∣∣ > ε

]
= |An| max

a∈An

P [|N(a)− E[N(a)]| > εE[N(a)]]

Now, N(a) − E[N(a)] =
∑

g

∑
i 1ig(a) − G(n + 1)π(a) =

∑
g Wg where Wg =

∑
i 1ig(a) −

(n+ 1)π(a) = Ng(a)− E[Ng(a)]. Note that the Wg are independent, E[Wg] = 0 and:

|Wg| ≤ (n+ 1)max{π(a), 1− π(a)}

V[Wg] = V

[∑
i

1ig(a)

]
=
∑
i

V[1ig(a)] + 2
∑
i

∑
j>i

Cov(1ig(a),1jg(a))

= (n+ 1)π(a)(1− π(a)) + (n+ 1)(n+ 2){E[1ig(a)1jg(a)]− π(a)2}

≤ (n+ 1)π(a)(1− π(a)) + (n+ 1)(n+ 2)π(a)(1− π(a))

= (n+ 1)(n+ 3)π(a)(1− π(a)).

Then, by Bernstein’s inequality,

P [|Wg]| > εE[N(a)]] ≤ 2 exp

{
− E[N(a)]2ε2∑

g V[Wg] +
1
3(n+ 1)max{π(a), 1− π(a)}E[N(a)]ε

}

= 2 exp

{
−

1
2G

2(n+ 1)2π(a)2ε2

G(n+ 1)(n+ 3)π(a)(1− π(a)) + 1
3G(n+ 1)2π(a)max{π(a), 1− π(a)}ε

}

= 2 exp

{
−

1
2Gπ(a)ε2

n+3
n+1(1− π(a)) + 1

3 max{π(a), 1− π(a)ε}

}

≤ 2 exp

{
−

1
2Gπ(a)ε2

n+3
n+1 + ε

3

}
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Therefore,

|An| max
a∈An

P
[∣∣∣∣ π̂(a)π(a)

− 1

∣∣∣∣ > ε

]
≤ 2 exp

{
−Gπn

(
1
2ε

2

n+3
n+1 + ε

3

− log |An|
Gπn

)}
→ 0.

as required. □

Proof of Lemma A2 Take ε > 0, then:

P
[
max
a∈An

∣∣∣∣ π̂(a)π(a)
− 1

∣∣∣∣ > ε

]
≤
∑
a∈An

P
[∣∣∣∣ π̂(a)π(a)

− 1

∣∣∣∣ > ε

]
≤ |An| max

a∈An

P
[∣∣∣∣ π̂(a)π(a)

− 1

∣∣∣∣ > ε

]
→ 0

by Lemma A1. □

A7 Proofs of Additional Results

Proof of Corollary A1 Under exchangeability π(a) = π(d, s) = pd(1 − p)1−d
(
n
s

)
ps(1 −

p)n−s =
(
n
s

)
ps+d(1−p)n+1−s−d. This function is minimized at πn = pn+1 where p = min{p, 1−

p}. Thus,

log |An|
Gpn+1

= exp

{
− logG

(
1 +

n+ 1

logG
log p− log log |An|

logG

)}
and since |An| = 2(n+1), this term converges to zero when (n+1)/ logG → 0. On the other

hand,

|An|
G(n+ 1)πn

=
2

Gpn+1
≤ 2 log |An|

Gpn+1
→ 0

under the same condition. □

Proof of Corollary A2 Under exchangeability, π(a) = π(d, s) = qd+s

(
s+1
n+1

)d
×
(
1− s

n+1

)1−d
.

Under the assignment mechanism in Section B, πn = q0 and q0 ≥ 1
2(n+3) and thus:

log |An|
Gπn

≤ 2(n+ 3) log(2(n+ 2))

G
= exp

{
− logG

(
1− log(2(n+ 2))

logG
− log log 2(n+ 1)

logG

)}
→ 0

if log(n+ 1)/ logG → 0. Finally,

|An|
G(n+ 1)πn

≤ 4(n+ 1)(n+ 3)

G
= exp

{
− logG

(
1− log(n+ 1)

logG
− log(4(n+ 3))

logG

)}
→ 0

under the previous condition. □
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