
Causal Spillover Effects Using Instrumental Variables:

Supplemental Appendix

Gonzalo Vazquez-Bare*

December 13, 2021

Abstract

This supplemental appendix provides the proofs of the results in the paper and additional

results and discussions not included in the paper to conserve space.

*Department of Economics, University of California, Santa Barbara. gvazquez@econ.ucsb.edu.

gvazquez@econ.ucsb.edu


Contents

A1 Additional Identification Results 2

A1.1 Indirect ITT Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

A1.2 Total ITT Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

A1.3 Identification Under Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . 3

A1.4 Multiple Treatment Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A2 Further Details on Estimation and Inference 6

A3 Further Details on AR confidence intervals 7

A4 Additional Empirical Results 8

A5 Proofs of Main Results 9

A5.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A5.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A5.3 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A5.4 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A5.5 Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A5.6 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A5.7 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A5.8 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A5.9 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A5.10Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A5.11Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A6 Proofs of Additional Results 24

A6.1 Proof of Lemma A1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A6.2 Proof of Lemma A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A6.3 Proof of Proposition A1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1



A1 Additional Identification Results

A1.1 Indirect ITT Effects

The following result characterizes the indirect ITT effect.

Lemma A1 Under Assumptions 1-3,

E[Yig|Zig = 0, Zjg = 1]− E[Yig|Zig = 0, Zjg = 0] =

E[Yig(1, 0)− Yig(0, 0)|{SCig} × {GCjg, NTjg}]

× P[{SCig} × {GCjg, NTjg}]

+E[Yig(1, 1)− Yig(0, 0)|{SCig} × {SCjg, Cjg}]

× P[{SCig} × {SCjg, Cjg}]

+E[Yig(1, 1)− Yig(0, 1)|SCig, ATjg]

× P[SCig, ATjg]

+E[Yig(0, 1)− Yig(0, 0)|{Cig, GCig, NTig} × {SCjg, Cjg}]

× P[{Cig, GCig, NTig} × {SCjg, Cjg}]

+E[Yig(1, 1)− Yig(1, 0)|{ATig} × {SCjg, Cjg}]

× P[{ATig} × {SCjg, Cjg}].

A1.2 Total ITT Effects

The following result characterizes the total ITT effect.

Lemma A2 Under Assumptions 1-3

E[Yig|Zig = 1, Zjg = 1]− E[Yig|Zig = 0, Zjg = 0] =

E[Yig(1, 0)− Yig(0, 0)|{SCig, Cig, GCig} × {NTjg}]

× P[{SCig, Cig, GCig} × {NTjg}]

+E[Yig(1, 1)− Yig(1, 0)|{ATig} × {SCjg, Cjg, GCjg}]

× P[{ATig} × {SCjg, Cjg, GCjg}]

+E[Yig(0, 1)− Yig(0, 0)|{NTig}, {SCig, Cjg, GCjg}]

× P[{NTig}, {SCig, Cjg, GCjg}]

+E[Yig(1, 1)− Yig(0, 1)|{SCig, Cig, GCig} × {ATjg}]

× P[{SCig, Cig, GCig} × {ATjg}]

+E[Yig(1, 1)− Yig(0, 0)|{SCig, Cig, GCig} × {SCjg, Cjg, GCjg}]

× P[{SCig, Cig, GCig} × {SCjg, Cjg, GCjg}].

2



A1.3 Identification Under Monotonicity

In the absence of spillovers, Imbens and Rubin (1997) show that different combinations of Dig

and Zig can be exploited to identify average potential outcomes for compliers. The intuition

behind this approach is that a unit with Dig = 1 and Zig = 0 is necessarily an always-taker,

whereas a unit with Dig = 1 and Zig = 1 can be an always-taker or a complier, and hence the

combination of these two cases identifies E[Yig(1)|Cig] (and an analogous argument implies

identification of E[Yig(0)|Cig]). To see why does approach does not work in the presence of

spillovers, notice that a unit with Dig = 1, Djg = 1, Zig = 0, Zjg = 0 is an always-taker with

an always-taker peer. However, a unit with Dig = 1, Djg = 1, Zig = 1, Zjg = 0 could be an

always-taker, a social complier or a complier, and her peer could be an always-taker or a

social complier, and it is not possible to disentangle each unit’s compliance type.

Table A1 shows what can be identified under monotonicity without further restrictions

by exploiting the variation in (Dig, Djg, Zig, Zjg). For instance, the first row in the table

indicates that:

E[Yig|Dig = 1, Djg = 1, Zig = 0, Zjg = 0] = E[Yig(1, 1)|ATig, ATjg].

The table shows that, without further assumptions, is it not possible to point identify aver-

age potential outcomes for specific compliance types, with the exception of E[Yig(1, 1)|ATig, ATjg]

and E[Yig(0, 0)|NTig, NTjg].

On the other hand, Table A2 illustrates why one-sided noncompliance is enough to obtain

identification of causal parameters. Importantly, under one-sided noncompliance, the event

Cig ∪ GCig ∪ NTig covers the whole sample space, and therefore, for example, E[Yig|Dig =

1, Djg = 0, Zig = 1, Zjg = 0] = E[Yig(1, 0)|{Cig} × {Cig, GCig, NTig}] = E[Yig(1, 0)|Cig].

Finally, Table A3 illustrates that this strategy does not work when ruling out always-

takers only.

A1.4 Multiple Treatment Levels

The identification results in the paper can be extended to the case of multi-level treat-

ments. To adapt the notation to this case, suppose that Dig ∈ D = {0, 1, . . . ,K}. The

potential outcome is Yig(k, k
′) (which implicitly imposes the exclusion restriction) where

k, k′ ∈ {0, 1, . . . ,K} indicate different treatment levels. The observed outcome is:

Yig =
∑
k∈D

∑
k′∈D

Yig(k, k
′)1(Dig = k)1(Djg = k′).

Suppose that the instrument Zig takes as many values as the treatment, that is, Zig ∈ Z
where Z = D. For example, Zig could indicate random assignment into different treatment

levels, and Dig indicates whether unit i actually receives the assigned treatment level. The

potential treatment status is Dig(k, k
′) where k, k′ ∈ Z. Each unit i can have up to (K +1)2
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Table A1: System of equations under monotonicity

Dig Djg Zig Zjg Yig(d, d
′) ξig ξjg

1 1 0 0 Yig(1, 1) AT AT
1 1 0 1 Yig(1, 1) AT,SC AT,SC,C
1 1 1 0 Yig(1, 1) AT,SC,C AT,SC
1 1 1 1 Yig(1, 1) AT,SC,C,GC AT,SC,C,GC
0 0 1 1 Yig(0, 0) NT NT
0 0 1 0 Yig(0, 0) GC,NT C,GC,NT
0 0 0 1 Yig(0, 0) C,GC,NT GC,NT
0 0 0 0 Yig(0, 0) SC,C,GC,NT SC,C,GC,NT
1 0 0 0 Yig(1, 0) AT SC,C,GC,NT
1 0 0 1 Yig(1, 0) AT,SC GC,NT
1 0 1 0 Yig(1, 0) AT,SC,C C,GC,NT
1 0 1 1 Yig(1, 0) AT,SC,C,GC NT
0 1 1 1 Yig(0, 1) NT AT,SC,C,GC
0 1 1 0 Yig(0, 1) GC,NT AT,SC
0 1 0 1 Yig(0, 1) C,GC,NT AT,SC,C
0 1 0 0 Yig(0, 1) SC,C,GC,NT AT

Table A2: System of equations under monotonicity and OSN

Dig Djg Zig Zjg Yig(d, d
′) ξig ξjg

1 1 1 1 Yig(1, 1) C,GC C,GC
0 0 1 1 Yig(0, 0) NT NT
0 0 1 0 Yig(0, 0) GC,NT C,GC,NT
0 0 0 1 Yig(0, 0) C,GC,NT GC,NT
0 0 0 0 Yig(0, 0) C,GC,NT C,GC,NT
1 0 1 0 Yig(1, 0) C C,GC,NT
1 0 1 1 Yig(1, 0) C,GC NT
0 1 1 1 Yig(0, 1) NT C,GC
0 1 0 1 Yig(0, 1) C,GC,NT C
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Table A3: System of equations under monotonicity and no AT

Dig Djg Zig Zjg Yig(d, d
′) ξig ξjg

1 1 0 1 Yig(1, 1) SC SC,C
1 1 1 0 Yig(1, 1) SC,C SC
1 1 1 1 Yig(1, 1) SC,C,GC SC,C,GC
0 0 1 1 Yig(0, 0) NT NT
0 0 1 0 Yig(0, 0) GC,NT C,GC,NT
0 0 0 1 Yig(0, 0) C,GC,NT GC,NT
0 0 0 0 Yig(0, 0) SC,C,GC,NT SC,C,GC,NT
1 0 0 1 Yig(1, 0) SC GC,NT
1 0 1 0 Yig(1, 0) SC,C C,GC,NT
1 0 1 1 Yig(1, 0) SC,C,GC NT
0 1 1 1 Yig(0, 1) NT SC,C,GC
0 1 1 0 Yig(0, 1) GC,NT SC
0 1 0 1 Yig(0, 1) C,GC,NT SC,C

different potential treatment statuses given by own and peer’s treatment assignment.

I will assume that non-compliance is one-sided, and that units cannot switch between

non-control treatment statuses. For example, in Foos and de Rooij (2017), the treatment

assignment consists of three treatment levels: control, low-intensity treatment and high-

intensity treatment. In this setting, units may refuse the treatment they are assigned, but

units assigned to the low-intensity treatment cannot receive the high-intensity treatment and

vice versa.

Proposition A1 Suppose that, in addition to Assumption 2, D = Z = {0, 1, 2, . . . ,K}, and:

(a) Dig(0, k
′) = 0 for all k′ ∈ Z,

(b) Dig(k, k
′) ∈ {0, k} for all k, k′ ∈ Z.

Then, for any k, k′ ∈ {0, 1, . . . ,K} such that E[1(Dig(k, 0) = k)] > 0 and E[1(Djg(0, k
′) =

k′)] > 0,

E[1(Dig = k)|Zig = k, Zjg = 0] = E[1(Dig(k, 0) = k)]

E[Yig|Zig = k, Zjg = 0]− E[Yig|Zig = 0, Zjg = 0]

E[1(Dig = k)|Zig = k, Zjg = 0]
= E[Yig(k, 0)− Yig(0, 0)|Dig(k, 0) = k]

E[Yig|Zig = 0, Zjg = k′]− E[Yig|Zig = 0, Zjg = 0]

E[1(Djg = k′)|Zig = 0, Zjg = k′]
= E[Yig(0, k′)− Yig(0, 0)|Djg(k

′, 0) = k′].

Condition (a) in Proposition A1 implies that units who are assigned to the control condi-

tion remain untreated, and Condition (b) states that a unit who is offered treatment level k

can either receive that treatment level or remain untreated. This result shows how to identify

the proportion of units who comply with treatment level k, E[1(Dig(k, 0) = k)], the average
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direct effect on units who comply with treatment level k, E[Yig(k, 0)−Yig(0, 0)|Dig(k, 0) = k],

and the average spillover effect on units whose peer complies with treatment level k′.

A2 Further Details on Estimation and Inference

All the parameters of interest in Section 4 can be recovered by estimating expectations using

sample means. More precisely, let

1
z
ig =


1(Zig = 0, Zjg = 0)

1(Zig = 1, Zjg = 0)

1(Zig = 0, Zjg = 1)

1(Zig = 1, Zjg = 1)


and let H(·) be a vector-valued function whose exact shape depends on the parameters to be

estimated, as illustrated below. Then the goal is to estimate:

µ = E

[
1
z
ig

H(Yig, Dig, Djg)⊗ 1
z
ig

]

where the first four elements correspond to the assignment probabilities P[Zig = z, Zjg = z′]

and the remaining elements corresponds to estimands of the form E[Yig1(Dig = d,Djg =

d′)1(Zig = z, Zjg = z′)]. The most general choice of H in this setup is the following:

H(Yig, Dig, Djg) =



1(Dig = 0, Djg = 0)
...

1(Dig = 1, Djg = 1)

Yig1(Dig = 0, Djg = 0)
...

Yig1(Dig = 1, Djg = 1)


which is a vector of dimension equal to eight that can be used to estimate all the first-stage

estimands E[1(Dig = d,Djg = d′)|Zig = z, Zjg = z′] and average outcomes E[Yig1(Dig =

d,Djg = d′)|Zig = z, Zjg = z′]. In this general case, the total number of equations to be

estimated is 36: four probabilities P[Zig = z, Zjg = z′] plus the four indicators 1(Zig =

z, Zjg = z′) times each of the eight elements in H(·). The dimension of H(·) can be reduced,

for example, by focusing on ITT parameters E[Yig|Zig = z, Zjg = z′], which corresponds to:

H(Yig, Dig, Djg) = Yig,
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or by imposing the assumptions described in previous sections. For instance, under one-sided

noncompliance, the parameters in Corollaries 1 and 2 can be estimated by defining:

1
z
ig =

1(Zig = 0, Zjg = 0)

1(Zig = 1, Zjg = 0)

1(Zig = 0, Zjg = 1)


and

H(Yig, Dig, Djg) =


Dig

Yig

Yig(1−Dig)

Yig(1−Djg)

 .

Regardless of the choice of 1zig and H(·), the dimension of the vector of parameters to be

estimated is fixed (and at most 36). Consider the following sample mean estimator:

µ̂ =
1

G

G∑
g=1

Wg

where

Wg =

[
(1z1g + 1

z
2g)/2

(H(Y1g, D1g, D2g)⊗ 1
z
1g +H(Y2g, D2g, D1g)⊗ 1

z
2g)/2

]
.

It is straightforward to see that under assumption 5, µ̂ is consistent for µ and converges

in distribution to a normal random variable after centering and rescaling as G → ∞:

√
G(µ̂− µ)

D→ N (0,Σ)

where Σ = E[(Wg − µ)(Wg − µ)′], and where the limiting variance can be consistently

estimated by:

Σ̂ =
1

G

∑
g

(Wg − µ̂)(Wg − µ̂)′.

Finally, once µ̂ has been estimated, the treatment effects of interest can be estimated as (pos-

sibly nonlinear) transformations of µ̂, and their variance estimated using the delta method.

A3 Further Details on AR confidence intervals

In this section I outline the procedure to construct weak-instrument-robust confidence inter-

vals for the direct effect on compliers (the procedure for the spillover effect is analogous).

Given some hypothesized value β∗
1 for this effect, consider the following regression on the

subsample of units with untreated peers:

Yig − β∗
1Dig = θ0 + θ1Zig + ϵig.
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Since Zig is binary, θ̂1 = γ̂1−β∗
1D̄10 where D̄10 =

∑
g,iDigZig(1−Zjg)/

∑
g,i Zig(1−Zjg) is the

first-stage estimate and γ̂1 is the reduced-form estimate
∑

g,i YigZig(1 − Zjg)/
∑

g,i Zig(1 −
Zjg) −

∑
g,i Yig(1 − Zig)(1 − Zjg)/

∑
g,i(1 − Zig)(1 − Zjg). By previous results, as G →

∞, θ̂1 →P (E[Yig(1, 0)− Yig(0, 0)|Cig]− β∗
1)P[Cig] and thus under the null hypothesis that

E[Yig(1, 0)− Yig(0, 0)|Cig] = β∗
1 , θ1 = 0 and:

θ̂21

V (θ̂1)
→D χ2

1

where χ2
1 is the chi-squared distribution and V (θ̂1) is the variance of θ̂1. Noting that both

θ̂1 and its variance depend on β∗
1 , an AR confidence interval for E[Yig(1, 0)− Yig(0, 0)|Cig] is

given by:

{β∗
1 : θ̂21 ≤ V (θ̂1)χ

2
1,1−α}.

Finally, since θ̂1 = γ̂1 − β∗
1D̄10, V (θ̂1) = V (γ̂1) + (β∗

1)
2V (D̄10)− 2β∗

1Cov(γ̂1, D̄10). Therefore,

the AR confidence interval can be obtained by solving the inequality:

(β∗
1)

2
[
D̄2

10 − χ2
1,1−αV (D̄10)

]
+ 2β∗

1

[
χ2
1,1−αCov(γ̂1, D̄10)− γ̂1D̄10

]
+ γ̂21 − χ2

1,1−αV (γ̂1) ≤ 0

which depends only on the vector of estimated coefficients, their variance matrix and a

quantile from the χ2
1 distribution. In particular, notice that this quadratic function is strictly

convex whenever D̄2
10/V (D̄10) > χ2

1,1−α, which holds when the null hypothesis the first-stage

coefficient is zero is rejected at the α level. In this case, the AR confidence interval is bounded

and convex.

A4 Additional Empirical Results

The experiment conducted by Foos and de Rooij (2017) included two different treatment

levels. More precisely, the sample of 5,190 two-voter households with landline numbers were

stratified into three blocks based on their last recorded party preference (Labor party sup-

porter, rival party supported, unattached) and randomly assigned to one of three treatment

arms:

� High-intensity treatment: the telephone message had a strong partisan tone, explicitly

mentioning the Labour party and policies, taking an antagonistic stance toward the

main rival party.

� Low-intensity treatment: the telephone message avoided statements about party com-

petition and did not mention the candidate’s affiliation nor the rival party.

� Control: did not receive any form of contact from the campaign.

Finally, within the households assigned to the low- or high-intensity treatment arms, only

one household member was randomly selected to receive the telephone message.
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Table A4: Estimation Results with Multiple Treatments

Low-intensity treatment High-intensity treatment
ITT
Zig 0.0300 0.0310

(0.0145) (0.0146)
[0.0016 , 0.0584] [0.0023 , 0.0597]

Zjg 0.0485 0.0433
(0.0148) (0.0149)

[0.0195 , 0.0775] [0.0142 , 0.0724]
2SLS
Dig 0.0662 0.0688

(0.0318) (0.0323)
[0.0039 , 0.1285] [0.0055 , 0.1322]

Djg 0.1070 0.0962
(0.0324) (0.0328)

[0.0435 , 0.1706] [0.0318 , 0.1606]

N 7,750 7,696
Clusters 3,875 3,848

Notes: estimated results from reduced-form regressions (“ITT”) and 2SLS regressions (“2SLS”) separately for
each treatment arm against the control households. The first column shows the ITT and 2SLS results for the low-
intensity treatment arm. The second column shows the ITT and 2SLS results for the high-intensity treatment arm.
Standard errors in parentheses. 95%-confidence intervals are based on the large-sample normal approximation.
Estimation accounts for clustering at the household level.

In this section, I apply the results from Proposition A1 to analyze the effect of each

treatment arm by separately comparing households exposed to each treatment intensity to

the control households. The empirical results are shown in Table A4. The estimates suggest

that both treatment arms had very similar effects.

A5 Proofs of Main Results

A5.1 Proof of Proposition 1

By Assumption 2, E[Dig|Zig = z, Zjg = z′] = E[Dig(z, z
′)]. Thus, under monotonicity

(Assumption 3),

E[Dig|Zig = 0, Zig = 0] = E[Dig(0, 0)] = P[ATig]

E[Dig|Zig = 0, Zig = 1] = E[Dig(0, 1)] = P[ATig] + P[SCig]

E[Dig|Zig = 1, Zig = 0] = E[Dig(1, 0)] = P[ATig] + P[SCig] + P[Cig]

E[Dig|Zig = 1, Zig = 1] = E[Dig(1, 1)] = P[ATig] + P[SCig] + P[Cig] + P[GCig]
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Table A5: System of equations

Dig Djg Zig Zjg Probabilities

1 1 0 0 pAA

1 1 0 1 pAA + pAS + pAC + pSA + pSS + pSC
1 1 1 0 pAA + pAS + pAC + pSA + pSS + pSC
1 1 1 1 1− 2pN + pNN

0 0 1 1 pNN

0 0 1 0 pGC + pGG + pGN + pNC + pNG + pNN

0 0 0 1 pGC + pGG + pGN + pNC + pNG + pNN

0 0 0 0 1− 2pA + pAA

1 0 0 0 pAS + pAC + pAG + pAN

1 0 1 1 pNA + pNS + pNC + pNG

1 0 0 1 pAG + pAN + pSG + pSN
1 0 1 0 pAC + pAG + pAN + pSC + pSG + pSN + pCC + pCG + pCN

0 1 0 0 pAS + pAC + pAG + pAN

0 1 1 1 pNA + pNS + pNC + pNG

0 1 1 0 pAG + pAN + pSG + pSN
0 1 0 1 pAC + pAG + pAN + pSC + pSG + pSN + pCC + pCG + pCN

and by solving the system it follows that:

P[ATig] = E[Dig|Zig = 0, Zig = 0]

P[SCig] = E[Dig|Zig = 0, Zig = 1]− E[Dig|Zig = 0, Zig = 0]

P[Cig] = E[Dig|Zig = 1, Zig = 0]− E[Dig|Zig = 0, Zig = 1]

P[GCig] = E[Dig|Zig = 1, Zig = 1]− E[Dig|Zig = 1, Zig = 0]

and by monotonicity P[NTig] = 1− P[ATig]− P[SCig]− P[Cig]− P[GCig]. Finally,

E[DigDjg|Zig = 0, Zig = 0] = E[Dig(0, 0)Djg(0, 0)] = P[ATig, ATjg]

E[(1−Dig)(1−Djg)|Zig = 1, Zig = 1] = E[(1−Dig(1, 1))(1−Djg(1, 1))] = P[NTig, NTjg].

See Tables A5 and A6 for the whole system of equations. □
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Table A6: System of equations - simplified

Dig Djg Zig Zjg Probabilities Independent?

1 1 0 0 pAA 1
1 1 0 1 pA + pS − (pAG + pAN + pSG + pSN) 2
1 1 1 0 pA + pS − (pAG + pAN + pSG + pSN) -
1 1 1 1 1− 2pN + pNN 3
0 0 1 1 pNN 4
0 0 1 0 pG + pN − (pAG + pAN + pSG + pSN) 5
0 0 0 1 pG + pN − (pAG + pAN + pSG + pSN) -
0 0 0 0 1− 2pA + pAA 6
1 0 0 0 pA − pAA -
1 0 1 1 pN − pNN -
1 0 0 1 pAG + pAN + pSG + pSN 7
1 0 1 0 pC + (pAG + pAN + pSG + pSN) -
0 1 0 0 pA − pAA -
0 1 1 1 pN − pNN -
0 1 1 0 pAG + pAN + pSG + pSN -
0 1 0 1 pC + (pAG + pAN + pSG + pSN) -

A5.2 Proof of Lemma 1

Using that:

E[Yig|Zig = z, Zjg = z′] = E[Yig(0, 0)]

+ E[(Yig(1, 0)− Yig(0, 0))Dig(z, z
′)(1−Djg(z

′, z))]

+ E[(Yig(0, 1)− Yig(0, 0))(1−Dig(z, z
′))Djg(z

′, z)]

+ E[(Yig(1, 1)− Yig(0, 0))Dig(z, z
′)Djg(z

′, z)],

we have:

E[Yig|Zig = 1, Zjg = 0]− E[Yig|Zig = 0, Zjg = 0] =

+ E[(Yig(1, 0)− Yig(0, 0))(Dig(1, 0)(1−Djg(0, 1))−Dig(0, 0)(1−Djg(0, 0)))]

+ E[(Yig(0, 1)− Yig(0, 0))((1−Dig(1, 0))Djg(0, 1)− (1−Dig(0, 0))Djg(0, 0))]

+ E[(Yig(1, 1)− Yig(0, 0))(Dig(1, 0)Djg(0, 1)−Dig(0, 0)Djg(0, 0))].

Tables A7, A8 and A9 list the possible values that the terms that depend on the potential

treatment statuses can take, which gives the desired result after some algebra. □
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Table A7: Dig(1, 0)(1−Djg(0, 1))−Dig(0, 0)(1−Djg(0, 0))

Dig(1, 0) Djg(0, 1) Dig(0, 0) Djg(0, 0) Difference ξig ξjg

1 1 1 1 0
1 1 1 0 -1 AT SC
1 1 0 1 0
1 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 1 0 0 0
1 0 0 0 1 C,SC C,GC,NT
0 0 0 0 0

Table A8: (1−Dig(1, 0))Djg(0, 1)− (1−Dig(0, 0))Djg(0, 0)

Dig(1, 0) Djg(0, 1) Dig(0, 0) Djg(0, 0) Difference ξig ξjg

1 1 1 1 0
1 1 1 0 0
1 1 0 1 -1 C,SC AT
1 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 1 0 0 1 GC,NT SC
1 0 0 0 0
0 0 0 0 0

Table A9: Dig(1, 0))Djg(0, 1)−Dig(0, 0)Djg(0, 0)

Dig(1, 0) Djg(0, 1) Dig(0, 0) Djg(0, 0) Difference ξig ξjg

1 1 1 1 0
1 1 1 0 1 AT SC
1 1 0 1 1 C,SC AT
1 1 0 0 1 C,SC SC
1 0 1 0 0
0 1 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
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A5.3 Proof of Proposition 2

The result follows using that

E[Yig|Zig = z, Zjg = z′] = E[Yig(0, 0)]

+ E[(Yig(1, 0)− Yig(0, 0))Dig(z, z
′)(1−Djg(z

′, z))]

+ E[(Yig(0, 1)− Yig(0, 0))(1−Dig(z, z
′))Djg(z

′, z)]

+ E[(Yig(1, 1)− Yig(0, 0))Dig(z, z
′)Djg(z

′, z)],

combined with the facts that under one-sided noncompliance, Dig(0, 1) = Dig(0, 0) = 0,

for all i, Dig(1, 0) = 1 implies that i is a complier and Dig(1, 1) = 0 implies i is a never-

taker (see Table A2). In particular, E[YigDig|Zig = 1, Zjg = 0] = E[Yig(1, 0)Dig(1, 0)] =

E[Yig(1, 0)|Dig(1, 0) = 1]P[Dig(1, 0) = 1] and E[YigDjg|Zig = 0, Zjg = 1] = E[Yig(0, 1)|Djg(1, 0) =

1]P[Djg(1, 0) = 1]. On the other hand, E[Yig|Zig = 0, Zjg = 0] = E[Yig(0, 0)] = E[Yig(0, 0)|Cig]P[Cig]+

E[Yig(0, 0)|Cc
ig]P[Cc

ig] and E[Yig(1−Dig)|Zig = 1, Zjg = 0] = E[Yig(0, 0)|Dig(1, 0) = 0]P[Dig(1, 0) =

0] = E[Yig(0, 0)|Cc
ig]P[Cc

ig]. The remaining parts follow analogously. □

A5.4 Proof of Corollary 1

Combine lines 2 and 5 from the display in Proposition 2 and the results in Proposition 1,

noting that under one-sided noncompliance E[Dig|Zig = 0, Zjg = 1] = 0. □

A5.5 Proof of Corollary 2

We have that E[Yig(0, 0)] = E[Yig(0, 0)|Cig]P[Cig] + E[Yig(0, 0)|Cc
ig]P[Cc

ig] and thus

E[Yig(0, 0)|Cc
ig] =

E[Yig(0, 0)]− E[Yig(0, 0)|Cig]P[Cig]

1− P[Cig]

from which

E[Yig(0, 0)|Cig]− E[Yig(0, 0)|Cc
ig] =

E[Yig(0, 0)|Cig]− E[Yig(0, 0)]
1− P[Cig]

.

Using Proposition 2, we obtain

E[Yig(0, 0)|Cig]− E[Yig(0, 0)|Cc
ig] ={

E[Yig|Zig = 0, Zjg = 0]− E[Yig(1−Dig)|Zig = 1, Zjg = 0]

1− E[Dig|Zig = 1, Zjg = 0]

}
1

E[Dig|Zig = 1, Zig = 0]
.

Similarly,

E[Yig(0, 0)|Cjg]− E[Yig(0, 0)|Cc
jg] =

E[Yig(0, 0)|Cjg]− E[Yig(0, 0)]
1− P[Cjg]

.
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and thus

E[Yig(0, 0)|Cjg]− E[Yig(0, 0)|Cc
jg] ={

E[Yig|Zig = 0, Zjg = 0]− E[Yig(1−Djg)|Zig = 0, Zjg = 1]

1− E[Dig|Zig = 0, Zjg = 1]

}
1

E[Djg|Zig = 0, Zig = 1]
.□

A5.6 Proof of Proposition 3

Under one-sided noncompliance, for any Borel set Y,

P[Yig ∈ Y, Dig = 0|Zig = 1, Zjg = 0] = P[Yig(0, 0) ∈ Y, Dig(1, 0) = 0|Zig = 1, Zjg = 0]

= P[Yig(0, 0) ∈ Y, Dig(1, 0) = 0]

= P[Yig(0, 0) ∈ Y, Cc
ig]

and

P[Yig ∈ Y|Zig = 0, Zjg = 0] = P[Yig(0, 0) ∈ Y|Zig = 0, Zjg = 0]

= P[Yig(0, 0) ∈ Y]

= P[Yig(0, 0) ∈ Y, Cc
ig] + P[Yig(0, 0) ∈ Y, Cig]

from which

P[Yig(0, 0) ∈ Y, Cig] = P[Yig ∈ Y|Zig = 0, Zjg = 0]− P[Yig ∈ Y, Dig = 0|Zig = 1, Zjg = 0].

Since P[Yig(0, 0) ∈ Y, Cig] ≥ 0, a testable implication of this model is:

P[Yig ∈ Y|Zig = 0, Zjg = 0]− P[Yig ∈ Y, Dig = 0|Zig = 1, Zjg = 0] ≥ 0.

By the same reasoning,

P[Yig(0, 0) ∈ Y, Cjg] = P[Yig ∈ Y|Zig = 0, Zjg = 0]− P[Yig ∈ Y, Djg = 0|Zig = 0, Zjg = 1]

and the testable implication is;

P[Yig ∈ Y|Zig = 0, Zjg = 0]− P[Yig ∈ Y, Djg = 0|Zig = 0, Zjg = 1] ≥ 0

as required. □

A5.7 Proof of Theorem 1

First, consider the 2SLS regression of Yig on 1 − Dig and Dig (without an intercept) using

Zig and 1−Zig as instruments, on the subsample of units with Zjg = 0. The 2SLS estimator
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is given by:

α̂ = (Z̃′D̃)−1Z̃Y =

∑
g,i

[
1− Zig

Zig

] [
1−Dig Dig

]
(1− Zjg)

−1∑
g,i

[
1− Zig

Zig

]
Yig(1−Zjg) =

[
Ȳ00

Ȳ10−Ȳ00

D̄10
+ Ȳ00

]
.

The cluster-robust variance estimator is:

V̂cr(α̂) =
1

4G2

(
1

2G
Z̃′D̃

)−1∑
g

z̃′gûgû
′
gz̃g

(
1

2G
D̃′Z̃

)−1

where ûig = (Yig − α̂0(1−Dig)− α̂1Dig)(1− Zjg) and û′
g = [û1g û2g]. Next,

z̃′gûgû
′
gz̃g =

[
(1− Z1g)(1− Z2g)(û

2
1g + û22g + 2û1gû2g) 0

0 Z1g(1− Z2g)û
2
1g + Z2g(1− Z1g)û

2
2g

]

Then,

V̂cr,11(α̂) =
1

4G2p̂200

∑
g,i

(1− Zig)(1− Zjg)(û
2
ig + ûigûjg)

and

V̂cr,22(α̂) =
1

4G2D̄2
10p̂

2
10

∑
g,i

Zig(1− Zjg)û
2
ig +

(1− D̄10)
2

4G2D̄2
10p̂

2
00

∑
g,i

(1− Zig)(1− Zjg)(û
2
ig + ûigûjg).

Now, for any invertible transformation Ã, consider the transformed variables Z̃Ã and D̃Ã.

Let: δ̂(Ã) = ((Z̃Ã)′(D̃Ã))−1(Z̃Ã)′Y. The 2SLS estimator using this transformed variables

is:

δ̂(Ã) = ((Z̃Ã)′(D̃Ã))−1(Z̃Ã)′Y

= (Ã′Z̃′D̃Ã)−1Ã′Z̃′Y

= Ã−1(Z̃′D̃)−1(Ã′)−1Ã′Z̃′Y

= Ã−1(Z̃′D̃)−1Z̃′Y

= Ã−1α̂.

and

V̂cr(δ̂(Ã)) = Ã−1V̂cr(α̂)(Ã−1)′

Now, setting:

Ã =

[
1 0

1 1

]
gives the 2SLS estimator from the regression of Yig on Dig, and a constant using Zig as an

instrument, conditional on Zjg = 0, which is the parameterization considered in the paper.
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It follows that the conditional Wald estimator of the direct effect on compliers is:

δ̂1 =
Ȳ10 − Ȳ00

D̄10

and

V̂cr(δ̂1) = V̂cr,11(α̂) + V̂cr,22(α̂).

The case for the spillover effect estimator based on the regression of Yig on Djg using Zjg

as an instrument on the subsample of units with Zig = 0 follows analogously.

Next, consider the 2SLS regression of Yig on (1−Dig)(1−Djg), Dig(1−Djg), (1−Dig)Djg

and DigDjg using (1− Zig)(1− Zjg), Zig(1− Zjg), (1− Zig)Zjg and ZigZjg as instruments.

The 2SLS estimator is:

θ̂ =

(
1

2G
Z′D

)−1 1

2G
Z′Y.

Now,

1

2G
Z′D =

1

2G

∑
g,i


(1− Zig)(1− Zjg)

Zig(1− Zjg)

(1− Zig)Zjg

ZigZjg


[
(1−Dig)(1−Djg) Dig(1−Djg) (1−Dig)Djg DigDjg

]

=


p̂00 0 0 0

(1− D̄10)p̂10 D̄10p̂10 0 0

(1− D̄10)p̂10 0 D̄10p̂10 0

D̄00
11p̂11 D̄10

11p̂11 D̄01
11p̂11 D̄11

11p̂11


where

p̂zz′ =
1

2G

∑
g,i

1(Zig = z)1(Zjg = z′)

D̄z,z′ =

∑
g,iDig1(Zig = z)1(Zjg = z′)∑

g,i 1(Zig = z)1(Zjg = z′)

D̄d,d′

z,z′ =

∑
g,i 1(Dig = d)1(Djg = d′)1(Zig = z)1(Zjg = z′)∑

g,i 1(Zig = z)1(Zjg = z′)
.

The inverse can be found by direct calculation as the matrix Q̂ such that 1
2GZ

′D × Q̂ = I.

This gives:

Q̂ =

(
1

2G
Z′D

)−1

=


1
p̂00

0 0 0

− (1−D̄10)
D̄10p̂00

1
D̄10p̂10

0 0

− (1−D̄10)
D̄10p̂00

0 1
D̄10p̂10

0
2D̄10

11

p̂00D̄11
11

(
1−D̄10

D̄10

)
− D̄00

11

p̂00D̄11
11

− D̄10
11

D̄10D̄11
11 p̂10

− D̄10
11

D̄10D̄11
11 p̂10

1
D̄11

11 p̂11

 .
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On the other hand,

1

2G
Z′Y =


Ȳ00p̂00

Ȳ10p̂10

Ȳ01p̂10

Ȳ11p̂11


where

Ȳzz′ =

∑
g,i Yig1(Zig = z)1(Zjg = z′)∑
g,i 1(Zig = z)1(Zjg = z′)

.

Thus:

θ̂ =


Ȳ00

Ȳ10−Ȳ00

D̄10
+ Ȳ00

Ȳ01−Ȳ00

D̄10
+ Ȳ00

Ȳ11−Ȳ00

D̄11
11

− D̄10
11

D̄11
11

(
Ȳ10+Ȳ01−2Ȳ00

D̄10

)
+ Ȳ00

 .

Now, for any invertible transformation A, consider the transformed variables ZA and DA.

Let: β̂(A) = ((ZA)′(DA))−1(ZA)′Y. The 2SLS estimator using this transformed variables

is:

β̂(A) = ((ZA)′(DA))−1(ZA)′Y

= (A′Z′DA)−1A′Z′Y

= A−1(Z′D)−1(A′)−1A′Z′Y

= A−1(Z′D)−1Z′Y

= A−1θ̂.

and

V̂cr(β̂(A)) = A−1V̂cr(θ̂)(A
−1)′

Now, setting:

A =


1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1


gives the 2SLS estimator from the regression of Yig on Dig, Djg, DigDjg and a constant using

Zig, Zjg, ZigZjg as instruments, which is the parameterization considered in the paper. It
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follows that the 2SLS estimator, β̂, is:

β̂ =


β̂0

β̂1

β̂2

β̂3

 =


1 0 0 0

−1 1 0 0

−1 0 1 0

1 −1 −1 1

 θ̂

=


Ȳ00

Ȳ10−Ȳ00

D̄10
Ȳ01−Ȳ00

D̄10

Ȳ11−Ȳ00

D̄11
11

−
(
D̄11

11+D̄10
11

D̄11
11

)(
Ȳ10−Ȳ00

D̄10
+ Ȳ01−Ȳ00

D̄10

)


which implies that the treatment effect estimators β̂1 and β̂2 are identical to the conditional

Wald ratio estimators.

The cluster-robust variance estimator for θ̂ is:

V̂cr(θ̂) =
1

4G2

(
1

2G
Z′D

)−1∑
g

z′gε̂gε̂
′
gzg

(
1

2G
D′Z

)−1

where ε̂ig = Yig −D′
igθ̂. We have that:

z′gε̂gε̂
′
g =


(1− Z1g)(1− Z2g)(ε̂

2
1g + ε̂1g ε̂2g) (1− Z2g)(1− Z1g)(ε̂

2
2g + ε̂1g ε̂2g)

Z1g(1− Z2g)ε̂
2
1g + Z2g(1− Z1g)ε̂1g ε̂2g Z2g(1− Z1g)ε̂

2
2g + Z1g(1− Z2g)ε̂1g ε̂2g

(1− Z1g)Z2g ε̂
2
1g + (1− Z2g)Z1g ε̂1g ε̂2g (1− Z2g)Z1g ε̂

2
2g + (1− Z1g)Z2g ε̂1g ε̂2g

Z1gZ2g(ε̂
2
1g + ε̂1g ε̂2g) Z1gZ2g(ε̂

2
1g + ε̂1g ε̂2g)


and

Ω̂ =
∑
g

z′gε̂gε̂
′
gzg

=


ω11 0 0 0

0 ω22 ω23 0

0 ω23 ω33 0

0 0 0 ω44


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where

ω11 =
∑
g,i

(1− Zig)(1− Zjg)(ε̂
2
ig + ε̂ig ε̂jg)

ω22 =
∑
g,i

Zig(1− Zjg)ε̂
2
ig

ω23 =
∑
g,i

Zig(1− Zjg)ε̂ig ε̂jg

ω33 =
∑
g,i

(1− Zig)Zjg ε̂
2
ig

ω44 =
∑
g,i

ZigZjg(ε̂
2
ig + ε̂ig ε̂jg).

Let

Q̂ =

(
1

2G
Z′D

)−1

=


q11 0 0 0

q21 q22 0 0

q21 0 q22 0

q41 q42 q43 q44


where the exact values of the matrix were given above. The cluster-robust variance estimator

for θ̂ can be rewritten as:

V̂cr(θ̂) =
1

4G2
Q̂Ω̂Q̂′.

Then,

V̂cr,11(θ̂) =
1

4G2p̂200

∑
g,i

(1− Zig)(1− Zjg)(ε̂
2
ig + ε̂ig ε̂jg)

V̂cr,22(θ̂) =
1

4G2D̄2
10p̂

2
10

∑
g,i

Zig(1− Zjg)ε̂
2
ig +

(1− D̄10)
2

4G2D̄2
10p̂

2
00

∑
g,i

(1− Zig)(1− Zjg)(ε̂
2
ig + ε̂ig ε̂jg).

But notice that, if the residuals are the same, we have that V̂cr,11(θ̂) = V̂cr,11(α̂) and

V̂cr,22(θ̂) = V̂cr,22(α̂) which in turns implies that the cluster-robust variance estimators for β̂1

and δ̂1 are equal.

To see that the residuals are indeed equal, note that:

(1− Zjg)û
2
ig = (1− Zjg)(Yig − α̂0(1−Dig)− α̂1Dig)

= (1− Zjg)(Yig − θ̂0(1−Dig)− θ̂1Dig)

= (1− Zjg)ε̂
2
ig

which implies that δ̂0 = β̂0, V̂cr(δ̂0) = V̂cr(β̂0), δ̂1 = β̂1 and V̂cr(δ̂1) = V̂cr(β̂1). The results for

δ̂2 and β̂2 follow by the same argument. □
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A5.8 Proof of Lemma 2

This result is well-known and follows from standard 2SLS properties and using Theorem 1

as G → ∞. To find the exact formula for β3, note that

E[Yig|Zig = z, Zjg = z′] = β0 + β1E[Dig|Zig = z, Zjg = z′]

+ β2E[Djg|Zig = z, Zjg = z′]

+ β3E[DigDjg|Zig = z, Zjg = z′]

Under one-sided noncompliance, E[Dig|Zig = 0, Zjg = z′] = E[Djg|Zig = z, Zjg = 0] = 0

and thus:

E[Yig|Zig = 0, Zjg = 0] = β0

E[Yig|Zig = 1, Zjg = 0] = β0 + β1E[Dig|Zig = 1, Zjg = 0]

E[Yig|Zig = 0, Zjg = 1] = β0 + β2E[Dig|Zig = 0, Zjg = 1]

from which:

β0 = E[Yig|Zig = 0, Zjg = 0] = E[Yig(0, 0)]

β1 =
E[Yig|Zig = 1, Zjg = 0]− E[Yig|Zig = 0, Zjg = 0]

E[Dig|Zig = 1, Zjg = 0]
= E[Yig(1, 0)− Yig(0, 0)|Cig]

β2 =
E[Yig|Zig = 0, Zjg = 1]− E[Yig|Zig = 0, Zjg = 0]

E[Djg|Zig = 0, Zjg = 1]
= E[Yig(0, 1)− Yig(0, 0)|Cjg]

β3 =
E[Yig|Zig = 1, Zjg = 1]− β0 − β1E[Dig(1, 1)]− β2E[Djg(1, 1)]

E[Djg(1, 1)Djg(1, 1)]

as long as E[Djg(1, 1)Djg(1, 1)] > 0 (otherwise, β3 is not identified). Finally, note that

E[Yig|Zig = 1, Zjg = 1] = E[Yig(0, 0)]

+ E[Yig(1, 0)− Yig(0, 0)|Dig(1, 1) = 1]E[Dig(1, 1)]

+ E[Yig(0, 1)− Yig(0, 0)|Djg(1, 1) = 1]E[Djg(1, 1)]

+ E[Yig(1, 1)− Yig(1, 0)− Yig(0, 1) + Yig(0, 0)|Dig(1, 1) = 1, Djg(1, 1) = 1]

× E[Dig(1, 1)Djg(1, 1)]

and use the fact that Dig(1, 1) = 1 if i is a complier or a group complier to get that:

β3 = (E[Yig(1, 0)− Yig(0, 0)|GCig]− E[Yig(1, 0)− Yig(0, 0)|Cig])
P[GCig]

E[Dig(1, 1)Djg(1, 1)]

+ (E[Yig(0, 1)− Yig(0, 0)|GCjg]− E[Yig(0, 1)− Yig(0, 0)|Cjg])
P[GCjg]

E[Dig(1, 1)Djg(1, 1)]

+ E[Yig(1, 1)− Yig(1, 0)− (Yig(0, 1)− Yig(0, 0))|Dig(1, 1) = 1, Djg(1, 1) = 1].
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which gives the desired result. □

A5.9 Proof of Proposition 4

First,

E[Dig|Zig = 1, Zjg = 0, Xg] = E[Dig(1, 0)|Zig = 1, Zjg = 0, Xg]

= E[Dig(1, 0)|Xg] = P[Cig|Xg]

and

E[Dig|Zig = 1, Zjg = 1, Xg] = E[Dig(1, 1)|Zig = 1, Zjg = 1, Xg]

= E[Dig(1, 1)|Xg] = P[Cig|Xg] + P[GCig|Xg].

For the second part, we have that for the first term,

E
[
g(Yig, Xg)

(1− Zig)(1− Zjg)

p00(Xg)

]
= EXg

{
E
[
g(Yig, Xg)

(1− Zig)(1− Zjg)

p00(Xg)

∣∣∣∣Xg

]}
= EXg {E [g(Yig, Xg)|Zig = 0, Zjg = 0, Xg]}

= EXg {E [g(Yig(0, 0), Xg)|Zig = 0, Zjg = 0, Xg]}

= EXg {E [g(Yig(0, 0), Xg)|Xg]}

= E[g(Yig(0, 0), Xg)].

For the second term,

E
[
g(Yig, Xg)Dig

Zig(1− Zig)

p10(Xg)

]
= EXg

{
E
[
g(Yig, Xg)Dig

Zig(1− Zig)

p10(Xg)

∣∣∣∣Xg

]}
= EXg {E [g(Yig, Xg)Dig|Zig = 1, Zjg = 0, Xg]}

= EXg {E [g(Yig(1, 0), Xg)Dig(1, 0)|Zig = 1, Zjg = 0, Xg]}

= EXg {E [g(Yig(1, 0), Xg)Dig(1, 0)|Xg]}

= E [g(Yig(1, 0), Xg)Dig(1, 0)]

= E [g(Yig(1, 0), Xg)|Cig]P[Cig].
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For the third term,

E
[
g(Yig, Xg)Djg

(1− Zig)Zig

p01(Xg)

]
= EXg

{
E
[
g(Yig, Xg)Djg

(1− Zig)Zig

p01(Xg)

∣∣∣∣Xg

]}
= EXg {E [g(Yig, Xg)Djg|Zig = 0, Zjg = 1, Xg]}

= EXg {E [g(Yig(0, 1), Xg)Djg(0, 1)|Zig = 0, Zjg = 1, Xg]}

= EXg {E [g(Yig(0, 1), Xg)Djg(0, 1)]}

= E [g(Yig(0, 1), Xg)Djg(0, 1)]

= E[g(Yig(0, 1), Xg)|Cjg]P[Cjg].

For the fourth term,

E
[
g(Yig, Xg)(1−Dig)

Zig(1− Zjg)

p10(Xg)

]
= EXg

{
E
[
g(Yig, Xg)(1−Dig)

Zig(1− Zjg)

p10(Xg)

∣∣∣∣Xg

]}
= EXg {E [g(Yig, Xg)(1−Dig)|Zig = 1, Zjg = 0, Xg]}

= EXg {E [g(Yig(0, 0), Xg)(1−Dig(1, 0))|Zig = 1, Zjg = 0, Xg]}

= EXg {E [g(Yig(0, 0), Xg)(1−Dig(1, 0))|Xg]}

= E[g(Yig(0, 0), Xg)(1−Dig(1, 0))]

= E[g(Yig(0, 0), Xg)|Cc
ig]P[Cc

ig]

and the result follows from E[g(Yig(0, 0), Xg)] = E[g(Yig(0, 0), Xg)|Cig]P[Cig]+E[g(Yig(0, 0), Xg)|Cc
ig]P[Cc

ig].

Similarly for the fifth term,

E
[
g(Yig, Xg)(1−Djg)

(1− Zig)Zjg

p01(Xg)

]
= EXg

{
E
[
g(Yig, Xg)(1−Djg)

(1− Zig)Zjg

p01(Xg)

∣∣∣∣Xg

]}
= EXg {E [g(Yig, Xg)(1−Djg)|Zig = 0, Zjg = 1, Xg]}

= EXg {E [g(Yig(0, 0), Xg)(1−Djg(1, 0))|Zig = 0, Zjg = 1, Xg]}

= EXg {E [g(Yig(0, 0), Xg)(1−Djg(1, 0))|Xg]}

= E[g(Yig(0, 0), Xg)(1−Djg(1, 0))]

= E[g(Yig(0, 0), Xg)|Cc
jg]P[Cc

jg]

and it can be seen that all these equalities also hold conditional on Xg. □

A5.10 Proof of Proposition 5

By independence, E[Dig|Zig = z,Wig = w] = E[Dig(z, w)]. Then, under monotonicity,

E[Dig|Zig = 0,Wig = 0] = E[Dig(0, 0)] = P[Dig(0, 0) = 1] = P[ATig]. Next, E[Dig|Zig =

0,Wig = w∗]−E[Dig|Zig = 0,Wig = w∗−1] = E[Dig(0, w
∗)]−E[Dig(0, w

∗−1)] = P[Dig(0, w
∗) >

Dig(0, w
∗ − 1)] = P[SCig(w

∗)]. Similarly, E[Dig|Zig = 1,Wig = 0] − E[Dig|Zig = 0,Wig =

ng] = P[Dig(1, 0) > Dig(0, ng)] = P[Cig] and E[Dig|Zig = 1,Wig = w∗]−E[Dig|Zig = 1,Wig =
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w∗ − 1] = P[Dig(1, w
∗) > Dig(1, w

∗ − 1)] = P[GCig(w
∗)]. Finally, E[1 −Dig|Zig = 1,Wig =

ng] = P[Dig(1, ng) = 0] = P[NTig]. □

A5.11 Proof of Proposition 6

Under the assumptions in the proposition,

E[Yig|Dig = d, Sig = s, Zig = z,Wig = w] =
∑
zg

E[Yig|Dig = d, Sig = s, Zig = z,Wig = w,Z(i)g = zg]

× P[Z(i)g = zg|Dig = d, Sig = s, Zig = z,Wig = w]

=
∑
zg

E[Yig(d, s)|Dig(z, w) = d, Sig(z, zg) = s, Zig = z,Z(i)g = zg]

× P[Z(i)g = zg|Dig = d, Sig = s, Zig = z,Wig = w]

=
∑
zg

E[Yig(d, s)|Dig(z, w) = d, Sig(z, zg) = s]

× P[Z(i)g = zg|Dig = d, Sig = s, Zig = z,Wig = w]

= E[Yig(d, s)|Dig(z, w) = d]

where the second equality uses the fact that Sig depends on the whole vector of instruments,

the third equality follows by independence and the fourth equality uses independence of

peers’ types.

Now, note that for any s, E[Yig|Dig = 1, Sig = s, Zig = 0,Wig = 0] = E[Yig(1, s)|Dig(0, 0) =

1] = E[Yig(1, s)|ATig] which shows that E[Yig(1, s)|ATig] is identified. Then,

E[Yig|Dig = 1, Sig = s, Zig = 0,Wig = 1] = E[Yig(1, s)|Dig(0, 1) = 1]

= E[Yig(1, s)|ATig]
P[ATig]

P[ATig] + P[SC(1)ig]

+ E[Yig(1, s)|SCig(1)]
P[SCig(1)]

P[ATig] + P[SCig(1)]

and hence E[Yig(1, s)|SCig(1)] is identified by the results above and Proposition 5. By the

same logic,

E[Yig|Dig = 1, Sig = s, Zig = 0,Wig = 2] = E[Yig(1, s)|Dig(0, 2) = 1]

= E[Yig(1, s)|ATig]
P[ATig]

P[ATig] + P[SC(1)ig] + P[SC(2)ig]

+ E[Yig(1, s)|SCig(1)]
P[SCig(1)]

P[ATig] + P[SC(1)ig] + P[SC(2)ig]

+ E[Yig(1, s)|SCig(2)]
P[SCig(2)]

P[ATig] + P[SC(1)ig] + P[SC(2)ig]

and thus E[Yig(1, s)|SCig(2)] is identified. The same reasoning shows that as long as all

required probabilities are non-zero, E[Yig(1, s)|ξig] is identified for all values of ξig except for
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Table A10: Dig(0, 1)(1−Djg(1, 0))−Dig(0, 0)(1−Djg(0, 0))

Dig(1, 0) Djg(0, 1) Dig(0, 0) Djg(0, 0) Difference ξig ξjg

1 1 1 1 0
1 1 1 0 -1 AT SC,C
1 0 1 0 0
1 1 0 1 0
1 1 0 0 0
1 0 0 0 1 SC GC,NT
0 1 0 1 0
0 1 0 0 0
0 0 0 0 0

ξig = NT , since the assignment (1, s) is never observed for never-takers. Identification of

E[Yig(0, s)|ξig] for all values of ξig ̸= AT follows similarly. □

A6 Proofs of Additional Results

A6.1 Proof of Lemma A1

Using that:

E[Yig|Zig = z, Zjg = z′] = E[Yig(0, 0)]

+ E[(Yig(1, 0)− Yig(0, 0))Dig(z, z
′)(1−Djg(z

′, z))]

+ E[(Yig(0, 1)− Yig(0, 0))(1−Dig(z, z
′))Djg(z

′, z)]

+ E[(Yig(1, 1)− Yig(0, 0))Dig(z, z
′)Djg(z

′, z)],

we have:

E[Yig|Zig = 1, Zjg = 0]− E[Yig|Zig = 0, Zjg = 0] =

+ E[(Yig(1, 0)− Yig(0, 0))(Dig(0, 1)(1−Djg(1, 0))−Dig(0, 0)(1−Djg(0, 0)))]

+ E[(Yig(0, 1)− Yig(0, 0))((1−Dig(0, 1))Djg(1, 0)− (1−Dig(0, 0))Djg(0, 0))]

+ E[(Yig(1, 1)− Yig(0, 0))(Dig(0, 1)Djg(1, 0)−Dig(0, 0)Djg(0, 0))].

Tables A10, A11 and A12 list the possible values that the terms that depend on the

potential treatment statuses can take, which gives the desired result after some algebra. □
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Table A11: (1−Dig(0, 1))Djg(1, 0)− (1−Dig(0, 0))Djg(0, 0)

Dig(1, 0) Djg(0, 1) Dig(0, 0) Djg(0, 0) Difference ξig ξjg

1 1 1 1 0
1 1 1 0 0
1 0 1 0 0
1 1 0 1 -1 SC AT
1 1 0 0 0
1 0 0 0 0
0 1 0 1 0
0 1 0 0 1 C,CG,NT SC,C
0 0 0 0 0

Table A12: Dig(0, 1)Djg(1, 0)−Dig(0, 0)Djg(0, 0)

Dig(1, 0) Djg(0, 1) Dig(0, 0) Djg(0, 0) Difference ξig ξjg

1 1 1 1 0
1 1 1 0 1 AT SC,C
1 0 1 0 0
1 1 0 1 1 SC AT
1 1 0 0 1 SC SC,C
1 0 0 0 0
0 1 0 1 0
0 1 0 0 0
0 0 0 0 0
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Table A13: Dig(1, 1)(1−Djg(1, 1))−Dig(0, 0)(1−Djg(0, 0))

Dig(1, 1) Djg(1, 1) Dig(0, 0) Djg(0, 0) Difference ξig ξjg

1 1 1 1 0
1 1 0 1 0
0 1 0 1 0
1 1 1 0 -1 AT SC,C,GC
1 1 0 0 0
0 1 0 0 0
1 0 1 0 0
1 0 0 0 -1 SC,C,GC NT
0 0 0 0 0

A6.2 Proof of Lemma A2

Using that:

E[Yig|Zig = z, Zjg = z′] = E[Yig(0, 0)]

+ E[(Yig(1, 0)− Yig(0, 0))Dig(z, z
′)(1−Djg(z

′, z))]

+ E[(Yig(0, 1)− Yig(0, 0))(1−Dig(z, z
′))Djg(z

′, z)]

+ E[(Yig(1, 1)− Yig(0, 0))Dig(z, z
′)Djg(z

′, z)],

we have:

E[Yig|Zig = 1, Zjg = 1]− E[Yig|Zig = 0, Zjg = 0] =

+ E[(Yig(1, 0)− Yig(0, 0))(Dig(1, 1)(1−Djg(1, 1))−Dig(0, 0)(1−Djg(0, 0)))]

+ E[(Yig(0, 1)− Yig(0, 0))((1−Dig(1, 1))Djg(1, 1)− (1−Dig(0, 0))Djg(0, 0))]

+ E[(Yig(1, 1)− Yig(0, 0))(Dig(1, 1)Djg(1, 1)−Dig(0, 0)Djg(0, 0))].

Tables A13, A14 and A15 list the possible values that the terms that depend on the

potential treatment statuses can take, which gives the desired result after some algebra. □

A6.3 Proof of Proposition A1

Under the conditions of the proposition,

E[1(Dig = k)|Zig = k, Zjg = 0] = E[1(Dig(k, 0) = d)|Zig = k, Zjg = 0] = E[1(Dig(k, 0) = k)]
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Table A14: (1−Dig(1, 1))Djg(1, 1)− (1−Dig(0, 0))Djg(0, 0)

Dig(1, 1) Djg(1, 1) Dig(0, 0) Djg(0, 0) Difference ξig ξjg

1 1 1 1 0
1 1 0 1 -1 SC,C,GC AT
0 1 0 1 0
1 1 1 0 0
1 1 0 0 0
0 1 0 0 1 NT SC,C,GC
1 0 1 0 0
1 0 0 0 0
0 0 0 0 0

Table A15: Dig(1, 1)Djg(1, 1)−Dig(0, 0)Djg(0, 0)

Dig(1, 1) Djg(1, 1) Dig(0, 0) Djg(0, 0) Difference ξig ξjg

1 1 1 1 0
1 1 1 0 1 SC,C,GC AT
1 0 1 0 0
1 1 0 1 1 AT SC,C,GC
1 1 0 0 1 SC,C,GC SC,C,GC
1 0 0 0 0
0 1 0 1 0
0 1 0 0 0
0 0 0 0 0
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On the other hand, for any k ∈ {0, 1, . . . ,K},

E[Yig1(Dig = k)|Zig = k, Zjg = 0] = E[Yig(k, 0)1(Dig(k, 0) = k)]

E[Yig1(Dig = 0)|Zig = k, Zjg = 0] = E[Yig(0, 0)1(Dig(k, 0) = 0)]

= E[Yig(0, 0)|Dig(k, 0) = 0]E[1(Dig(k, 0) = 0)]

= E[Yig(0, 0)1(Dig(k, 0) = k)] + E[Yig(0, 0)1(Dig(k, 0) = 0)]

and E[Yig|Zig = k, Zjg = 0] = E[Yig1(Dig = k)|Zig = k, Zjg = 0] + E[Yig1(Dig = 0)|Zig =

k, Zjg = 0], from which:

E[Yig|Zig = k, Zjg = 0]− E[Yig|Zig = 0, Zjg = 0]

E[1(Dig = k)|Zig = k, Zjg = 0]
= E[Yig(k, 0)|Dig(k, 0) = k]

Similarly,

E[Yig|Zig = 0, Zjg = k]− E[Yig|Zig = 0, Zjg = 0]

E[1(Djg = k)|Zig = 0, Zjg = k]
= E[Yig(0, k)|Djg(k, 0) = k]

as required. □

28


	Additional Identification Results
	Indirect ITT Effects
	Total ITT Effects
	Identification Under Monotonicity
	Multiple Treatment Levels

	Further Details on Estimation and Inference
	Further Details on AR confidence intervals
	Additional Empirical Results
	Proofs of Main Results
	Proof of Proposition 1
	Proof of Lemma 1
	Proof of Proposition 2
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Proposition 3
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6

	Proofs of Additional Results
	Proof of Lemma A1
	Proof of Lemma A2
	Proof of Proposition A1


